

PRESENCIA, DETECCIÓN, Y REMOCIÓN DE METALES PESADOS EN PLANTAS DE TRATAMIENTO DE AGUAS RESIDUALES. REVISIÓN DE UNA DÉCADA DE LITERATURA.

Investigador principal
JENIFER KATHERINE SANCHEZ PEÑA
Asesor(a)
JOVANNA ACERO GODOY M.Sc.

Universidad Colegio Mayor de Cundinamarca Facultad de Ciencias de la Salud Programa de Bacteriología y Laboratorio Clinico Enero de 2019 Bogota, Colombia

1. INTRODUCCIÓN

Agua como recurso natural universal_(1,2).

ARD Y ARI aportan grandes cantidades de agentes biológicos y sustancias químicas, entre estas metales pesados(3).

Los metales pesados son el único contaminante no biodegradable, toxico e incluso carcinógeno(4).

Métodos de detección: especificidad, sensibilidad, rentabilidad y sostenibilidad ambiental.

Actualmente existe una gran variedad de técnicas convencionales y no convencionales empleadas en la remoción de metales pesados(4).

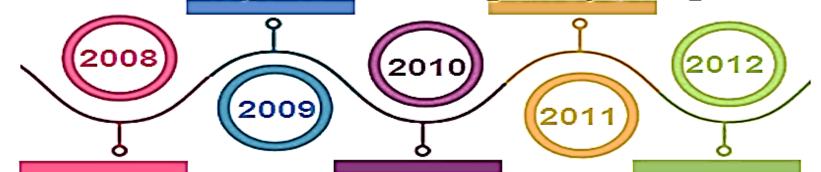
2. OBJETIVOS

2.1. Objetivo general

Realizar una revisión bibliográfica de los últimos diez años (2008 - 2018), sobre la presencia, técnicas de detección, y remoción de metales pesados en plantas de tratamiento de aguas residuales (PTAR).

2.2. Objetivos específicos

➤ Determinar la presencia de metales pesados


➤ Describir los métodos implementados en la detección de metales pesados Comparar la eficacia de las técnicas de remoción de metales pesados

PTAR durante los últimos diez años (2008-2018) a nivel global

3. ANTECEDENTES

Rev. ARI galvánicas. Electrocoagulación, MO, aceites, N, P, SS y MP (Cd, Cu, Cr, Sn, Ni, Zn). 95%(6) Chavez y Cristancho Rev. 185 estudios de remoción MP- PTAR, IO, ADS, FM (>90% (CrT) y (Ni), coaq-floc, flot.(8). Fenglian Fu y Qi Wang

Cuizano y Navarro

Algas marinas adsorción biosorción Undaria pinatiffida Pb(5).

Lasso y Ramirez

reúso de ARPR caña de azúcar y palma de aceite en Colombia, las AR beneficiosa, con impacto ambiental controlable. Calidad del ARPR gravedad STD, pH (6.5 – 8.4) Fe y Mn(7).

Mancilla y Col.

91 muestras de ARPR de Puebla y Veracruz. (pH), (CE), As y MP: Cd, Cr, Cu, Hg, Ni, Pb y Zn ICP-MS > (SSA 2000). pH ácido reduce biodisponibilidad MP(9).

Minería, fertilizantes, organofosforado/insectici das, aumento de MP: Hg, Pb, As, Cd, Cu, Cr(10).

Zn, Cr, Cu, Ni, Pb, As, Cd en los lodos de alcantarillado de 9 PTAR. China, riesgo ecológico de MP lodos cloacales. Lodo era seguro para uso agrícola sin MP, excepto 3 PTAR, de Cr, As y Ni(12).

Duan B. y Col

Reutilización ARROA obtención de aluminio PTAR Turquía. FM, PTUF, NF270 y OI inversa (SW30), contra PQ, < 35% Al y Cr, FM. NF270 (> 90%) Al. Cr v Ni(11).

Londoño A. Ates y Uzal

Macias y Col.

(OSWV) Cd⁺² y Pb⁺² quebrada Las Torres del sector Parque Industrial en Sogamoso (Colombia), niveles > LMA - AR. método de referencia, confianza 95%(13).

Feng J. y Col. Efluentes 12 PTAR China (As, Cd, Cu, Hg, Mn, Pb, Zn, Cr, Hg). 92% (Cr) 16,7% (Hg). efecto agudo y/o crónico del

Cu, Ni, Pb y Zn.(14).

MARCO TEÓRICO

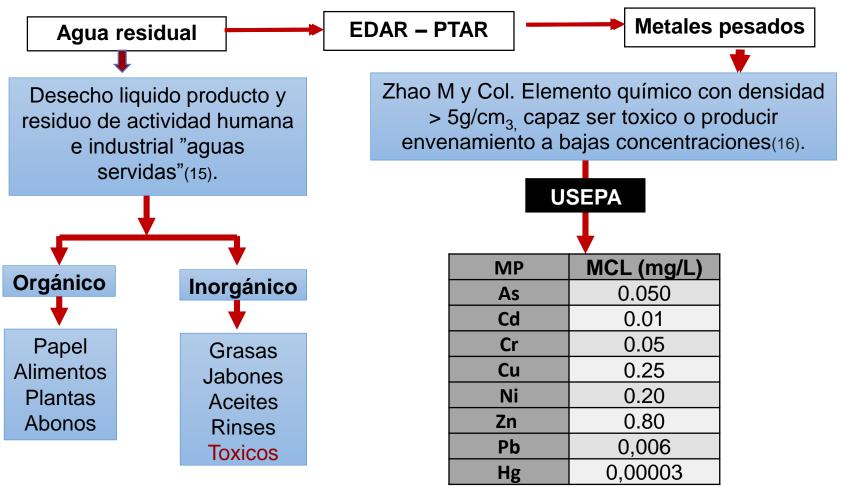
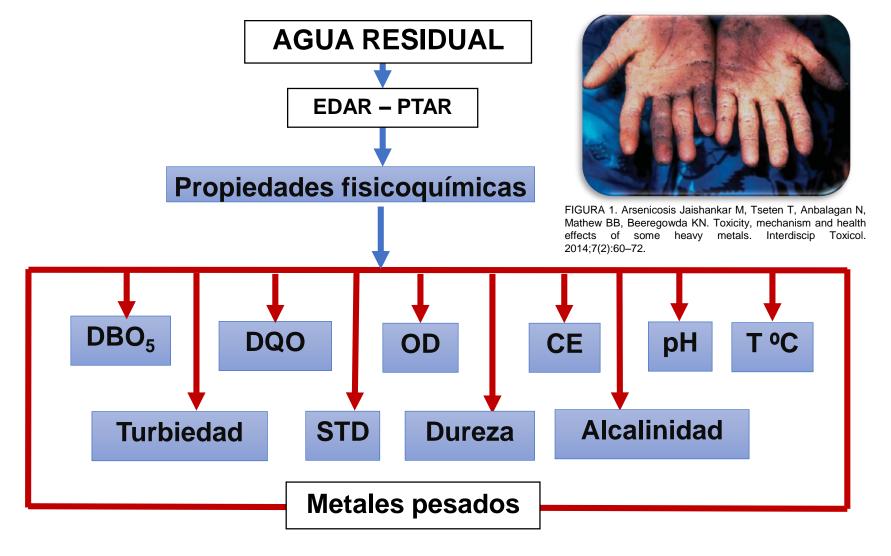
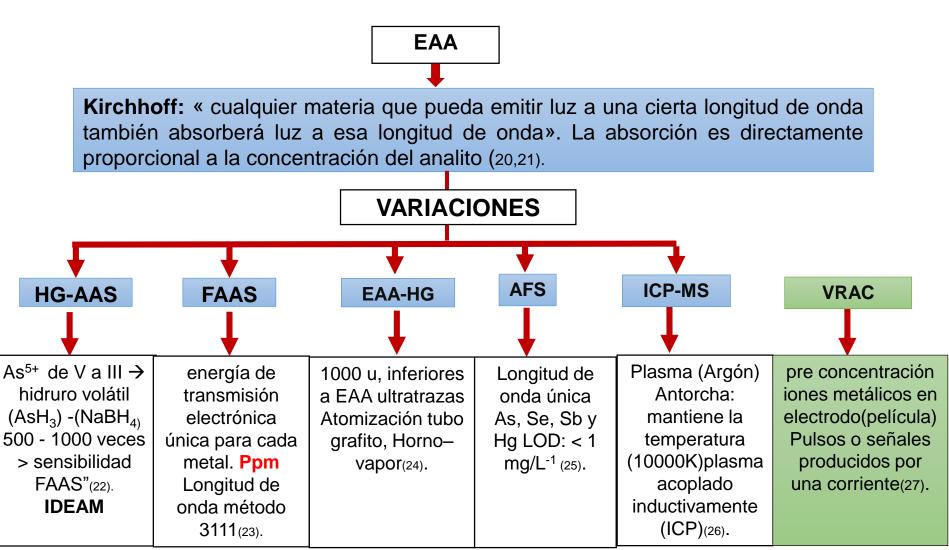



Tabla 1. elementos químicos considerados MP

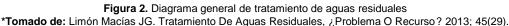
^{*}Adaptado de: (Babel and Kurniawan, 2003), Zhao M y colaboradores. Nuevas tendencias en la eliminación de metales pesados de aguas residuales. Appl Microbiol Biotechnol 2016(16).


DBO₅: Materia orgánica biodegradable- oxigeno requerido MO(17,18).

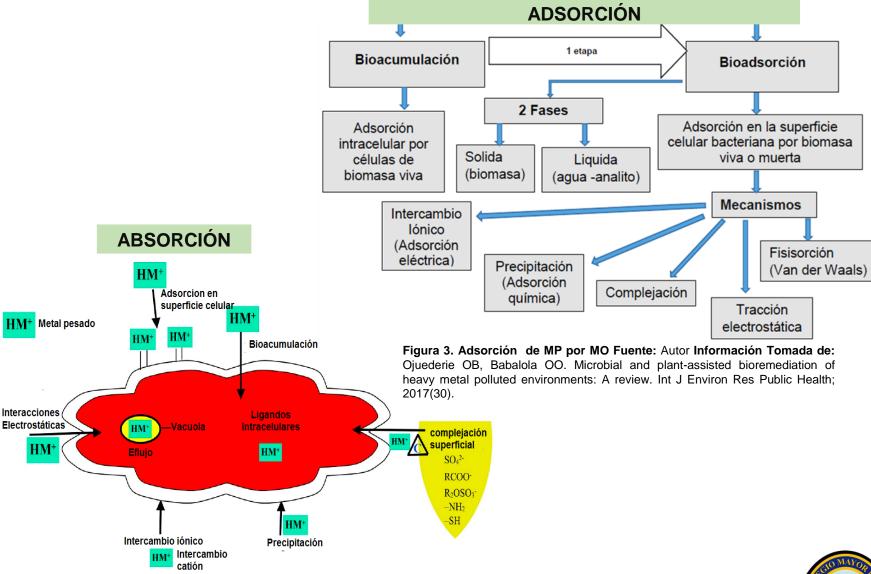
DQO: O₂ equivalente al contenido de materia orgánica susceptible de oxidación química(19).

OD: Oxigeno presente en el agua. > OD > contaminación(18).

Detección de metales pesados



Remoción de metales pesados


PTAR

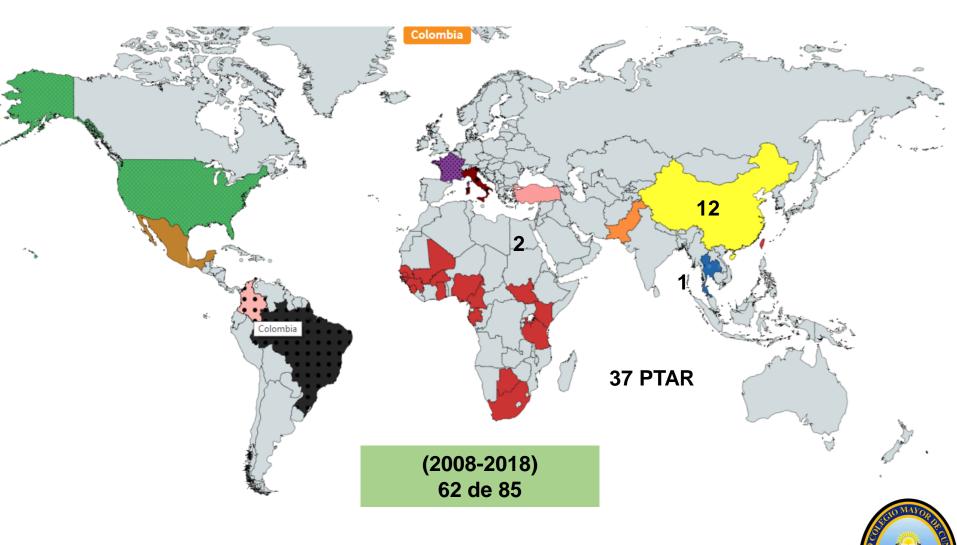
conjunto de obras, instalaciones y procesos para tratar las aguas residuales, en donde se busca la descontaminación del agua captada(28).

Figura 4. Mecanismos de absorción de metales pesados por microorganismos. ***Tomado de:** Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int J Environ Res Public Health. 2017; 14((30)

METODOLOGÍA

Tipo de investigación

- Documental, estudio descriptivo
- Artículos científicos, libros e investigaciones


Revisión de artículos

 Publicaciones científicas, repositorios de tesis y proyectos de grado de diferentes Universidades del mundo.
 Matriz de Microsoft Office Excel®. las variables analizadas, idioma, año, base de datos, objetivos, métodos utilizados, resultados obtenidos más relevantes y conclusiones

Criterios de inclusión

- Artículos científicos e investigaciones (2008-2018).
- Hallazgos de métodos de detección, cuantificación y remoción de metales pesados como contaminantes existentes en aguas captadas en PTAR en el mundo
- Origen de diversos países de todos los continentes

RESULTADOS Y DISCUSIÓN

Figura 5. Distribución de información a nivel global **Elaborado en:** https://mapchart.net/world.html

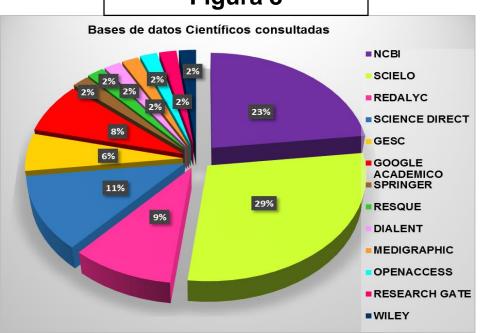

Figura 6

Figura 7

Figura 8

Figura 9

Presencia

En todas las PTAR, presencia de metales pesados que sobrepasan VMA por la legislación vigente competente (3,4,6,36,39,40,41).

Los metales de interés en detección y eliminación, fueron Cd, As, Pb, Hg, Cr, Cu, Ni, Zn.

Detección

(HG-AAS) aplicable a todo tipo de agua, por acoplamiento a caracterización química de elementos metálicos.

(FAAS) técnica > especifica. Energía única a cada elemento, menos sensible (HG-AAS).EAA-HG es la técnica mas sensible

Todos los métodos de detección, requieren de un pre tratamiento

Remoción

La coagulación-floculación: técnica química - remoción Mg y Fe del 100% con Ca (OH)_{2,} Fe, Zn y Ni, 98% (FeCl₃), y (PAC)₍₃₀₎.

La cantidad excesiva de lodos, desplaza métodos convencionales (precipitación) no convencionales (filtración por membrana)(31).

Filtración por membrana como método no convencional – nanofiltración 99% Ni y Cr(32).

Remoción

capacidad metabólica de los microrganismos por mecanismos de Bioadsorción y bioacumulación

Los sistemas biológicos (microorganismos) remoción >90%. Alta resistencia a cargas toxicas.

ceniza volante, no convencional, bajo costo, eficiencia de remoción baja, remueven metales Hg2. inviable ambientalmente(33).

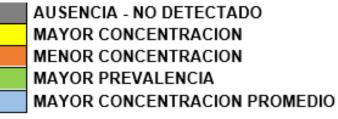

EPS, permitieron mejorar el rendimiento de la actividad metabólica en biomasa viva (*Paenibacillus* sp) – Cd, Zn y Cu₍₃₄₎.

Tabla 2. Metales pesados en afluentes captados en PTAR en diferentes países.

	TIPO DE AGUAS	Metales en Afluentes ug/L											
REGION (PTAR)	RESIDUALES	ΑI	As	cd	CrT	Cu	Fe T	Mn	Ni	Pb	Sb	Sn	Zn
Seine – Aval	M+I			0.69	9.42	65.17	682.4		10.92	18.56			
(Paris - Francia)	1.740.000 m ³ /día			0.09	9.42	05.17	002.4		10.92	10.56			
Ribeirao Preto	M+I			0.15	6.87	17.31		E2 E2		37.42			79.2
(Sao Paulo Brasil)	40.000 m ³ /día			0.15	0.07	17.51		52.53		31.42			19.2
5 Central	M+I (25%)			233	10 C	AEE 4	17217	200 22	20.04	13.97			240.0
(Bangkok –Tailandia)	577.000 m ³ /día			233	18.6	455.1	1/21/	209.32	32.21	13.97			310.9
Central Thessaloniki	M+I (10%)			3.3	40	79	480	67	770	39			470
(Grecia)	135.000 m ³ /día			3.3	40	79	400	67	770	39			470
Fusina	M+I	4320	8.4	1	17.8	108	4650	91	46	31.1			356
(Venecia – Italia)	100.000 m ³ /día	4320	0.4	•	17.0	100	4030	31	7	31.1			550
Gdansk WWT	M+I			13		100				50			470
(Gdansk – Polonia)	10111			2		100				30			470
WWTP Este	M+I (20%)	1526	105	18	456	48	1571	114	77	87	380	468	405
(Bursa – Turquía)	240.000 m ³ /día												
WWTP Oeste	M+I (35%)	200.4	70	7	447	51	2470	454	66	40	200	207	1000
(Bursa - Turquía)	87.500 m ³ /día	208.4	78	'	147	51	2478	154	66	49	209	367	1266
PROMEDIO CONCENTRACION				34.5	99.4	115.4	4513.1	114.642	167	40.756			479.6

Municipal + Industrial)Fuente: autor – información tomada de: Variación del contenido de metales en aguas residuales y lodos activados de las plantas centrales de tratamiento de aguas residuales de Bangkok. 2010(35).

RESULTADOS MAS RELEVANTES

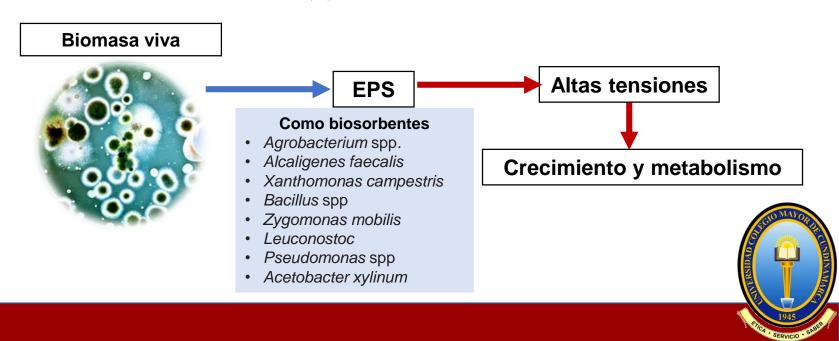
Tabla 3. Comparación de resultados del método voltamperometrico OSWV frente al método de referencia EAA (espectrometría de Absorción Atómica).

		Concentración ug/L				
		Voltamperometría de onda	Espectrofotometría de absorción			
Muestra		cuadrada OSWV	atómica EAA			
		(95 % confiable)	(95 % confiable)			
Muestra con estándar	Cd	679	690			
de Pb y Cd (0,2 mg/L)	Pb	711	705			
Muestra natural	Cd	364	359			
	Pb	347	339			
Estándar de Cd y Pb	Cd	964	968			
(0,9 mg/L)	Pb	947	944			

^{*}Tomado de: Macías Socha C, et al. Determinación Electroquímica De Plomo Y Cadmio En Aguas Superficiales.2017(35).

Tabla 4. Remoción de metales pesados mediante Coagulación-Floculación.

	Condiciones						
Esp.	рН	[] inicial	tT _{r horas}	T∘C	Método y complemento	R %	Ref
Fe		Fe 15,2 mg/L			Tres coagulantes	98%	Bakar, et
Zn	7.0	Zn 5,8 mg/L	30 min	Am	(alumbre, cloruro férrico, y cloruro de	83%	al; 2015
Ni		Ni 6,7 mg/L			polialuminio) y como floculante	63%	
		_			poliacrilamida anionico		
Mg	8-9	308,7 mg/L	2-15	28	Se utilizó como coagulante Ca(OH) ₂	91,3%	Carrera,
Fe		145,6 mg/L	min		_	100%	et 🔑
							2012


Esp (Especia metálica) [] (Concentración), tTr horas (tiempo de tratamiento en horas), T°C (temperatura en grados centígrados), R% (porcentaje de remoción), Ref (referencia) *Tomado de: Caviedes D. Et al. 2015. Tratamientos para la Remoción de Metales Pesados Comúnmente Presentes en Aguas Residuales Industriales. Una Revisión. Pág. 9(32).

EPS - Paenibacillus sp.

Tabla 5. Eficiencia de remoción de metales pesados en experimentos llevados a cabo en ausencia y / o presencia de EPS, con o sin microorganismos.

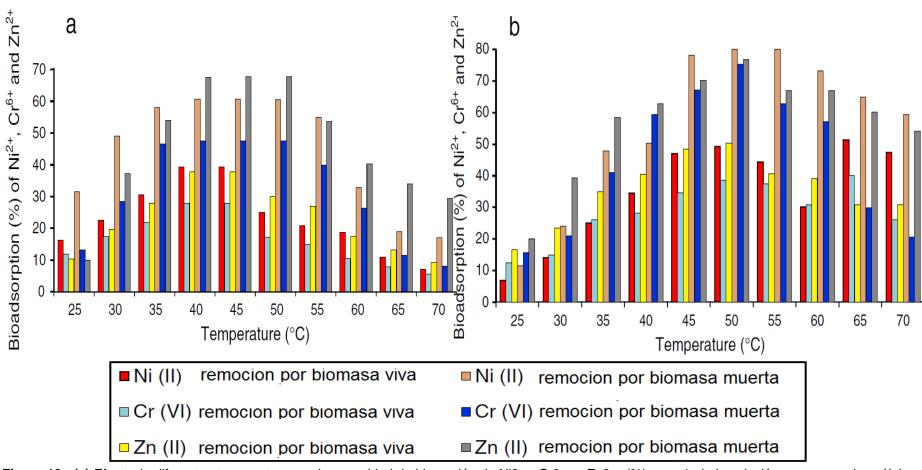
Experimento	EFICIENCIA DE REMOCION (%)				
	Cd	Zn	Cu		
Ausencia de EPS					
MP adsorbido en superficie celular	4,33	39,05	12,36		
MP internalizado en la célula	1,77	15,78	9,36		
Presencia de EPS					
MP adsorbido en superficie celular	3,51	30,33	14,57		
MP internalizado en la célula	1,84	17,02	10,36		
MP adsorbido en EPS	87,12	19,82	37,64		
Presencia de EPS sin M.O.					
MP adsorbido en EPS	98,00	53,25	51,69		

^{*}Tomado de: Martins PSDO, et al. Aplicación de una sustancia polimérica extracelular bacteriana en la adsorción de metales pesados en un sistema acuoso co-contaminado. 2008 (36)

Dosis biomasa muerta

Tabla 6. Efecto de la dosificación de biosorbente sobre la eficiencia de remoción (%) de metales pesados (Ni^{2+,} Cr^{6+,} Zn²⁺) por biomasa muerta de *Nocardiopsis* sp. MORSY1948 y *Nocardia* sp. MORSY2014

Biosorbente	MP	Eficiencia de biosorción (%) a diferentes dosis de biosorbentes (%)				
		0.05	0.1	0.2	0.3	0.4
Nocardiopsis sp.	Ni ²⁺	13.77	41.90	60.19	87.90	100
MORSY1948	Cr ⁶⁺	9.52	23.37	54.48	63.75	100
(células muertas)	Zn ²⁺	16.05	41.5	72.57	84.15	100
Nocardia sp.	Ni ²⁺	15.80	53.20	67.50	93.53	100
MORSY2014 (células	Cr ⁶⁺	19.27	34.81	70.29	89.22	100
muertas)	Zn ²⁺	11.91	40.32	66.12	90.37	100
MP: Metales Pesados						


^{*}Adaptado de: Ahmed MMA et al; 2016. Ahmed MMA et al. Evaluación y mejora de la biorremediacion de metales pesados en soluciones acuosas por *Nocardiopsis* sp. (MORSY1948) y *Nocardia* sp. (MORSY2014).2016 (37)

Directamente proporcional

Nocardia sp.

Figura 10. (a) Efecto de diferentes temperaturas en la capacidad de biosorción de Ni2 +, Cr6 + y Zn2 + (%) a partir de la solución acuosa por las células vivas y muertas de *Nocardiopsis* sp.MORSY1948. **(b)** Efecto de las diferentes temperaturas sobre la capacidad de biosorción de Ni2 +, Cr6 + y Zn2 + (%) a partir de una solución de resolución por las células vivas y muertas de *Nocardia* sp.MORSY2014.

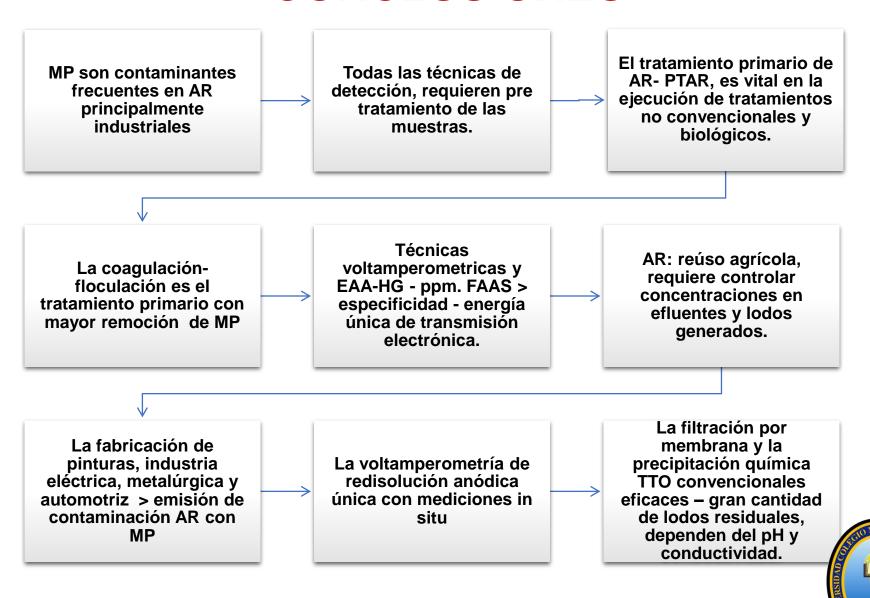
*Tomado de: Ahmed MMA et al; 2016. Ahmed MMA et al. Evaluación y mejora de la biorremediacion de metales pesados en soluciones a *Nocardiopsis* sp. (MORSY1948) y *Nocardia* sp. (MORSY2014).2016(37).

Protozoos

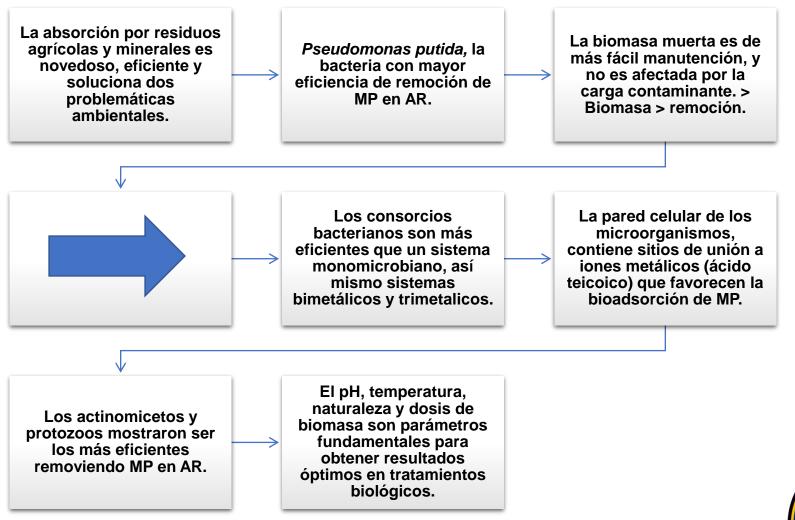
Bacterias	Metal	% remoción	Genes
	Zn	53%	CopC / Cobre
Bacillus licheniformis	Cd	39%	ChrB / Cromo
	Al	23%	CnrA3 / Cobalto - Níquel
	Ti	75%	nccA / Cadmio - Níquel
	Co	17%	CopC / Cobre
	Ni	33%	ChrB / Cromo
	Mn	21%	CnrA3 / Cobalto - Níquel
Brevibacillus	V	35%	nccA / Cadmio - Níquel
laterosporus	Pb	31%	
	Cu	29%	
	Zn	41%	
	Cd	35%	
	Ti	100%	CopC / Cobre
	Pb	96%	ChrB / Cromo
Pseudomonas putida	V	83%	CnrA3 / Cobalto - Níquel
	Co	71%	nccA / Cadmio - Níquel
	Ni	57%	
	Cu	49%	
	Mn	45%	
Protozoos	Metal	% remoción	Genes
	Ti	78%	CopC / Cobre
	Co	66%	chrB / Cubre
Peranema sp.	Pb	59%	cnrA3 / Cobalto – Níquel
	Zn	45%	
	Cd	42%	
Trachelophyllum sp.	Ni	27%	CopC / Cobre
	Cu	41%	chrB / Cubre
	Mn	33%	
	V	32%	

Tabla 7. Genes que codifican resistencia a metales pesados en bacterias y protozoos.

Fuente: Autor – Información tomada de: Kamika I, Momba MNB. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater. BMC Microbiol; 2013 (45).


Tabla 8. Ventajas y desventajas de los mecanismos de captación de iones metálicos

Bioadsorción	Bioacumulación
Proceso pasivo	Proceso activo
Biomasa sin vida	Biomasa con vida
Metales unidos a la superficie celular	Metales unidos a la superficie celular y
	acumulados en el interior de la célula
Proceso reversible	Proceso parcialmente reversible
No requiere nutrientes	Requiere nutrientes
Rápido	Lento
No es controlado por el metabolismo	Controlado por el metabolismo
No afectado por el efecto toxico	afectado por el efecto toxico
No hay crecimiento celular	Implica crecimiento celular
Alcanza concentraciones intermedias de	Alcanza muy bajas concentraciones de
equilibrio de los contaminantes	equilibrio de los contaminantes
Posibilidad de recuperación y reúso de contaminantes POR desorción	Los metales no pueden recuperarse
La biomasa puede regenerarse y emplearse en varios ciclos de adsorción	La biomasa no puede recuperarse


^{*}Tomado de: Tejada C, et al; 2015. Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. Tecno Lógicas (38).

CONCLUSIONES

CONCLUSIONES

RECOMENDACIÓNES

- ✓Los métodos de detección y remoción de metales pesados deben ser escogidos en función de la carga contaminante, estructura, normatividad vigente para cada país o región y presupuesto de cada PTAR.
- ✓ Evaluar el método de pretratamiento a fin a cada técnica de detección.

AGRADECIMIENTOS

A mi Asesora

Msc. Jovanna Acero Godoy

Por ofrecerme todas las herramientas académicas, humanas y su empeño profesional para el desarrollo de esta investigación.

A mi Alma Mater

Universidad Colegio Mayor de Cundinamarca Por ser parte fundamental de mi formación profesional

DEDICATORIA

A Dios.

Por sus infinitas bendiciones, por cada día que dedique a dar este gran paso, siempre con el objetivo de aportar a la sociedad, soñando con un mundo mejor.

A mi hijo - Alan Jacob.

Mi fuente de inspiración, orgullo y grandeza, agradezco por su paciencia, por soportar mis ausencias y comprender paso a paso este proceso.

A mis padres - Humberto y Rosalba.

Por el apoyo incondicional por sus valores y motivación constante, por su esfuerzo invaluable en la construcción de mi carrera profesional

A mi esposo - Luis.

¡Gracias a ustedes!

REFERENCIAS

- **1.** OMS. Guidelines for Drinking-water Quality. Atención Primaria [Internet]. 2006;23(Vdv):7. Available from: http://201.147.150.252:8080/xmlui/bitstream/handle/123456789/1262/Investigao_e_evo luo.pdf?sequence=1
- **2.** FAO. Reutilización de aguas para agricultura en América Latina y el Caribe: Estado, principios y necesidades. 2017. 116 p.
- **3.** Robledo Zacarías VH, Velázquez Machuca MA, Montañez Soto JL, Pimentel Equihua JL, Vallejo Cardona AA, López Calvillo MD, et al. Hidroquímica y contaminantes emergentes en aguas residuales urbano industriales de Morelia, Michoacán, México. Rev Int Contam Ambient. 2017;33(2):221–35.
- **4.** Rincón-silva NG. Evaluacion de parametros fisico-quimicos del agua en el proceso de potabilización del río Subachoque. 2017;
- **5.** Cuizano N a, Navarro AE. Biosorción de metales pesados por algas marinas: posible solución a la contaminación a bajas concentraciones. An Quím [Internet]. 2008;104(2):120–5. Available from: http://analesdecp22.webjoomla.es/index.php/AnalesQuimica/article/viewFile/416/405
- **6.** Chávez Porras Á, Cristancho Montenegro DL, Ospina Granados ÉA. Una Alternativa Limpia para el Tratamiento de las Aguas Residuales Galvánicas: Revision Bibliografica. Rev Ing Univ Medellín. 2009;8(14):39–50.

- **7**. Lasso J, Ramírez JL. Perspectivas generales del efecto del reúso de aguas residuales para riego en cultivos para la producción de biocombustibles en Colombia. El hombre y la máquina. 2010;36:95–105.
- **8.** Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. J Environ Manage [Internet]. 2011;92(3):407–18. Available from: http://dx.doi.org/10.1016/j.jenvman.2010.11.011
- **9.** Mancilla-Villa ÓR, Ortega-Escobar HM, Ramírez-Ayala C, Uscanga-Mortera E, Ramos-Bello R, Reyes-Ortigoza AL. Metales pesados totales y arsénico en el agua para riego de puebla y Veracruz, México. Rev Int Contam Ambient. 2011;28(1):39–48.
- **10.** Londoño Franco LF, Londoño Muñoz PT, Muñoz Garcia FG. Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal. Biotecnoloía en el Sect Agropecu y Agroindustrial [Internet]. 2016;14(2):145. Available from: http://revistabiotecnologia.unicauca.edu.co/revista/index.php/biotecnologia/article/view/1707
- **11.** Ates N, Uzal N. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration. Environ Sci Pollut Res. 2018;(Sergey 2011).
- **12.** Duan B, Zhang W, Zheng H, Wu C, Zhang Q, Bu Y. Disposal situation of sewage sludge from municipal wastewater treatment plants (WWTPs) and assessment of the ecological risk of heavy metals for its land use in Shanxi, China. Int J Environ Res Public Health. 2017;14(7).

- **13.** Macías Socha C, García Colmenares M, Chaparro S. P. Determinación Electroquímica De Plomo Y Cadmio En Aguas Superficiales. Luna Azul [Internet]. 2017;(44):27–38. Available from: http://200.21.104.25/lunazul/downloads/Lunazul44_3.pdf
- **14.** Feng J, Chen X, Jia L, Liu Q, Chen X, Han D, et al. Effluent concentration and removal efficiency of nine heavy metals in secondary treatment plants in Shanghai, China. Environ Sci Pollut Res. 2018;(2015):1–8.
- **15.** del Villar A. Guía Tratamientos Avanzados de Aguas Residuales urbanas. Trat Av Aguas Residuales [Internet]. 2010;70. Available from: http://www.consolider-tragua.com/documentos/guia_tratamientos_avanzados.pdf
- **16**. Zhao M, Xu Y, Zhang C, Rong H, Zeng G. New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol [Internet]. 2016;100(15):6509–18. Available from: http://dx.doi.org/10.1016/j.arabjc.2010.07.019.
- **17.** Larriva J, González O. Cinética de la remoción de DBO 5 en humedales con flujo subsuperficial horizontal. Ing Hidraul y Ambient. 2017;38(1):17–30.
- **18.** Arroba Torres CA, Ávila Malaver DA. Evaluación del desempeño de la planta de tratamiento de aguas residuales de un campus universitario. 2015;43. Available from: http://repository.usta.edu.co/bitstream/handle/11634/9408/ÁvilaDavid2015.pdf?sequence=1
- 19. Ivan M, German G, Sergio V. Remocion de Niquel y DQO presentes en las aguas residuales de la industria automotriz mediante electrocoagulacion. 2013;(19):13–21. Available

 from:

 http://search.ebscobost.com/login.aspx?direct=true&db=a9b&AN=90232018&lang=es&site.

http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=90232018&lang=es&site =ehost-live25. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxic 2014;7(2):60–72.

- **20**. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60–72.
- **21.** Ayangbenro AS, Babalola OO. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int J Environ Res Public Health. 2017;14(1).
- **22.** Razmilic B. Control de Calidad de Insumos y Dietas Acuicolas [Internet]. Fao Italia. 1994. Available from: http://www.fao.org/docrep/field/003/ab482s/AB482S04.htm
- 23. Cesar A, Vergara F, Acevedo R, Severiche C. Evaluación analítica para la determinación de arsénico y selenio en aguas por espectroscopía de absorción atómica. Boliv J Chem. 2014;31(1):10–4.
- **24**. Method FP, Method AS, Couple I. Anexo I Metodologias De Analisis Parte a : Aguas Superficiales Continentales. 1998;1–7.
- **25**. Hernández FG, Martínez, Antonio PlaJerez AH, Conde-Salazar LR, Guarnido OL. Determinación de Metales por absorción atómica Horno de Grafito [Internet]. 2009. Available from: http://www.ugr.es/~fgil/proyecto/grafito/fundamento3.html
- **26.** Sánchez-Rodas D, Corns WT, Chen B, Stockwell PB. Atomic Fluorescence Spectrometry: A suitable detection technique in speciation studies for arsenic, selenium, antimony and mercury. J Anal At Spectrom. 2010;25(7):933–46.
- **27**. Barve KH, Laddha KS, Jayakumar B. Extraction of saponins from safed musli. Pharmacogn J. 2010;2(13):561–4.
- **28.** Estrada J. Electrodos de Pasta de Carbón Modificados con Residuos de Café para Cuantificar Metales Pesados en Solución Acuosa. Tesis Doctoral. 2012;64.
- **29**. Alvis Yepes C. Evaluación del sistema de tratamiento de aguas residuales del complejo urbanístico Barcelona de Indias [tesis pre grado]. Bogota: Universidad nacional de Bogota; 2015. 2015;
- **30**. Torres P. Perspectivas del tratamiento anaerobio de aguas residuales domésticas en países en desarrollo. Rev EIA. 2012;115–29

- **31.** Tejada-Tovar C, Villabona-Ortiz Á, Garcés-Jaraba L. Adsorción de metales pesados en aguas residuales usando materiales de origen biológico. Tecno Lógicas. 2015;18(34):109–23.
- **32.** Ojuederie OB, Babalola OO. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int J Environ Res Public Health. 2017;14(12).
- **33**. Engels C, Kirkby E, White P. Mineral Nutrition, Yield and Source-Sink Relationships [Internet]. Marschner's Mineral Nutrition of Higher Plants: Third Edition. Elsevier Ltd; 2011. 85-94 p. Available from: http://dx.doi.org/10.1016/B978-0-12-384905-2.00005-4
- **34**. Salihoglu NK. Assessment of Urban Source Metal Levels in Influent, Effluent, and Sludge of Two Municipal Biological Nutrient Removal Wastewater Treatment Plants of Bursa, an Industrial City in Turkey. Clean Soil, Air, Water. 2013;41(2):153–65.
- **35**. Chanpiwat P, Sthiannopkao S, Kim KW. Metal content variation in wastewater and biosludge from Bangkok's central wastewater treatment plants. Microchem J [Internet]. 2010;95(2):326–32. Available from: http://dx.doi.org/10.1016/j.microc.2010.01.013
- **36**. Methods S. 3114 ARSENIC AND SELENIUM BY HYDRIDE GENERATION / ATOMIC ABSORPTION SPECTROMETRY * 3114 B . Manual Hydride Generation / Atomic Absorption Spectrometric Method [Internet]. 2009. Available from: https://www.standardmethods.org/store/ProductView.cfm?ProductID=209
- **37**. Rubio DIC, Calderón RAM, Gualtero AP, Acosta DR, Rojas IJS. Tratamientos para la Remoción de Metales Pesados Comúnmente Presentes en Aguas Residuales Industriales. Una Revisión. Rev Ing y Región. 2015;13(1):73–90.
- **38**. Muñoz Lucas MI. Caracterización y acondicionamiento de cenizas volantes para la eliminación de metales pesados en aguas contaminadas. tesis doctoral. universidad de Leon; 2012.
- **39**. Martins PSDO, De Almeida NF, Leite SGF. Application of a bacterial extracellular polymeric substance in heavy metal adsorption in a co-contaminated aqueous system. Brazilian J Microbiol. 2008;39(4):780–6

- **40**. Mervat Morsy Abbas Ahmed El-Gendy AMAE-B. Evaluation and enhancement of heavy metals bioremediation in aqueous solutions by Nocardiopsis sp. MORSY1948, and Nocardia sp. MORSY2014. Brazilian J Microbiol [Internet]. 2016;47(3):571–86. Available from: http://dx.doi.org/10.1016/j.bjm.2016.04.029
- . Gallegos W, Vega M, Noriega P. Espectroscopía de absorción atómica con llama y su aplicación para la determinación de plomo y control de productos cosméticos. La Granja, Rev Ciencias la vida. 2012;15(1):18–25.
- . Caviedes Rubio DI, Delgado DR, Olaya Amaya A. Remoción de metales pesados comúnmente generados por la actividad industrial, empleando macrófitas neotropicales. Prod mas Limpia [Internet]. 2016;11(2):126–49. Available from: http://www.scielo.org.co/scielo.php?pid=S1909-04552016000200012&script=sci_abstract&tlng=es

