Show simple item record

dc.contributor.advisorPosada Buitrago, Martha Lucía
dc.contributor.authorCortés Hernández, Alexandra
dc.date.accessioned2021-11-05T02:33:23Z
dc.date.available2021-11-05T02:33:23Z
dc.date.issued2019
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/3605
dc.description.abstractLa marchitez bacteriana en cultivos de tomate (Solanum lycopersicum), ocasionada por Ralstonia solanacearum, causante de grandes pérdidas en los cultivos. Las plantas poseen un elaborado sistema inmune, no obstante, los fitopatógenos buscan estrategias para evadir sus mecanismos de defensa y lograr invadirlas, causando que los agricultores realicen una alta inversión económica para su control. El objetivo de este trabajo es la búsqueda de regiones homólogas a péptidos antimicrobianos en el genoma de Solanum lycopersicum, que presenten un potencial efecto contra Ralstonia solanacearum. Por medio de bases de datos de Péptidos antimicrobianos (AMP) se eligieron tres péptidos tipo Defensinas encontrados en Spinacia oleracea (D1, D2, D5), luego se realizó un alineamiento de la secuencia de estos con 256 genes de Solanum lycopersicum, de los cuales tres presentaron homología con D1, se compararon los alineamientos para hallar las posiciones que presentaran cambios de aminoácidos. Por medio de I- TASSER se generó el modelo de la estructura 3D de D1 y se graficaron siete zonas con variaciones; las funciones de las posiciones afectadas fueron estudiadas, considerando las propiedades de los aminoácidos y se analizó la 12 secuencia de los péptidos homólogos en APD3, los resultados revelaron que los péptidos corresponden a AMP tipo Defensinas, coincidiendo con D1, además, los aminoácidos modificados compartieron características, por ende, se concluyó que estas variaciones no afectarían la acción antimicrobiana de los péptidos homólogos y presentarían un alto potencial para brindar una nueva estrategia de control contra la marchitez bacteriana.spa
dc.description.abstractThis project proposes a control strategy on bacterial wilt in tomato crops (Solanum lycopersicum), caused by Ralstonia solanacearum, and generates large losses in crops. Plants have an elaborate immune system, however, phytopathogens seek strategies to evade their defense mechanisms and achieve invasion; causing farmers to make a high economic investment for their control. The aim of this work is to search for regions homologous to antimicrobial peptides in the genome of Solanum lycopersicum, which have a potential effect against Ralstonia solanacearum. By means of AMP databases, three Defensin type peptides found in Spinacia oleracea (D1, D2, D5) were chosen, followed by an alignment of the sequence of these with 256 genes of S. lycopersicum, of which three (ADK36631, CAB42006.1, NP_001297247.1) presented homology with D1, the alignments were compared to find the positions presenting amino acid changes. Using I-TASSER, the model of the 3D structure of D1 was generated and seven zones with variations were plotted; the functions of the affected positions were studied, considering the properties of the amino acids and the sequence of the homologous peptides was analyzed in APD3, the results revealed that the peptides correspond to Defensins type AMP, coinciding with D1, in addition, the modified amino acids shared characteristics , therefore, it was concluded that these variations would not affect the antimicrobial action of ADK36631, CAB42006.1, NP_001297247.1 and would present a high potential to provide a new control strategy against bacterial wilt.eng
dc.description.tableofcontentsResumen 10 1. Introducción 13 2. Objetivos 15 3. Objetivo general 15 3.1.Objetivos específicos 15 4. Antecedentes 16 5. Marco referencial 18 5.1.Inmunología de las plantas 18 5.1.1. Receptores y respuesta inmunológica 20 5.2.Péptidos antimicrobianos 22 5.2.1. Tipos de Péptidos antimicrobianos 23 5.2.2. Rol de los péptidos antimicrobianos (AMP) en la respuesta inmunológica de las plantas 25 5.3. Marchitez bacteriana 26 5.3.1. Ralstonia solanacearum 27 5.3.2. Péptidos antimicrobianos como potencial control de la marchitez bacteriana 27 6. Diseño metodológico 29 7. Resultados 31 8. Discusión 40 9. Conclusiones 44 10.Referencias bibliográficas 45 11.Anexos 50spa
dc.format.extent60p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2019spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleBúsqueda de regiones homólogas a péptidos antimicrobianos en el genoma de Solanum lycopersicum con acción frente a Ralstonia solanacearumspa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.identifier.barcode60097
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotáspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesMeneguetti BT, Machado L dos S, Oshiro KGN, Nogueira ML, Carvalho CME, Franco OL. Antimicrobial peptides from fruits and their potential use as biotechnological Tools-A review and outlook. Front Microbiol. 2017;7(JAN):1–13.spa
dc.relation.referencesDANE. Encuesta Nacional Agropecuaria -ENA ESTADÍSTICAS AGROPECUARIAS. 2016; Available from: http://www.dane.gov.co/files/investigaciones/agropecuario/enda/ena/2016 /presentacion_ena_2016.pdfspa
dc.relation.referencesCCB C de C de B. Manual Tomate. Programa Apoyo Agrícola Y Agroindustrial Vicepresidencia Fortalec Empres Cámara Comer Bogotá. 2015;1–56.spa
dc.relation.referencesMINSA. Boletin informativo. J Phys Conf Ser. 2009;194:022014.spa
dc.relation.referencesEliana Mendoza Mendoza. Potencial biológico de cepas autóctonas de Streptomyces Spp. Como Antagonista frente a Ralstonia solanacearum. Vol. 91. 2017.spa
dc.relation.referencesBernal AJ. Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora , Alternaria y Ralstonia en Colombia . Una revisión Biotic contraints of the Solanaceae caused by Phytophthora ,. Agron Colomb. 2007;25(2):320–9.spa
dc.relation.referencesGonzález I, Arias Y. INTERACCIÓN PLANTA-BACTERIAS FITOPATÓGENAS : CASO DE ESTUDIO Ralstonia solanacearum - PLANTAS HOSPEDANTES PLANT-PHYTOPATHOGEN BACTERIA INTERACTION : CASE STUDY Ralstonia. 2009;24(2):69–80.spa
dc.relation.referencesMiller RNG, Alves GSC, Van Sluys MA. Plant immunity: Unravelling the complexity of plant responses to biotic stresses. Ann Bot. 2017;119(5):681–7.spa
dc.relation.referencesCastro E, García E. La inmunidad innata en las plantas : una batalla molecular entre receptores y estimuladores. Rev Biológicas. 2009;11(11):43–7.spa
dc.relation.referencesCarolina A, Arias R, Bogotá DC. IDENTIFICACIÓN DE GENES TIPO PÉPTIDO ANTIMICROBIANO PROVENIENTES DE Solanum lycopersicum var . cerasiforme TESIS PRESENTADA POR : Como requisito parcial para optar por el titulo de Maestría en Ciencias – Bioquímica DIRECTOR : HUMBERTO MIGUEL ZAMORA ESPITI. 2010;spa
dc.relation.referencesMaróti Gergely G, Kereszt A, Kondorosi É, Mergaert P. Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol. 2011;162(4):363–74.spa
dc.relation.referencesHolaskova E, Galuszka P, Frebort I, Oz MT. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv [Internet]. 2014;33(6):1005–23. Available from: http://dx.doi.org/10.1016/j.biotechadv.2015.03.007spa
dc.relation.referencesLipsky A, Joshi JR, Carmi N, Yedidia I. Expression levels of antimicrobial 48 peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection. J Biotechnol [Internet]. 2016;238:22–9. Available from: http://dx.doi.org/10.1016/j.jbiotec.2016.09.008spa
dc.relation.referencesSilva MS, Arraes FBM, Campos M de A, Grossi-de-Sa M, Fernandez D, Cândido E de S, et al. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. Plant Sci [Internet]. 2018;270(February):72–84. Available from: https://doi.org/10.1016/j.plantsci.2018.02.013spa
dc.relation.referencesGeorge N Arios. Fitopatología. Vol. 25. 2010. 30-41 p.spa
dc.relation.referencesPL A N T I M M U N OLOGY An infant giant. Nature. 2012;1:3–4.spa
dc.relation.referencesBenavides Mendoza A, Robledo Olivo A, García Enciso EL, Solís Gaona S, González Morales S. Efecto de elicitores de origen natural sobre plantas de tomate sometidas a estrés biótico. Rev Mex Ciencias Agrícolas. 2018;(20):4211–21.spa
dc.relation.referencesCheng C, Gao X, Feng B, Sheen J, Shan L, He P. Plant immune response to pathogens differs with changing temperatures. Nat Commun [Internet]. 2013;4(May):1–9. Available from: http://dx.doi.org/10.1038/ncomms3530spa
dc.relation.referencesCouto D, Zipfel C. Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol. 2016;16(9):537–52.spa
dc.relation.referencesPacheco JM. Proteínas R Y Percepción De Efectores R-Proteins and Perception of Pathogenic Effectors in. 2017;32(1):1–9. Available from: http://scielo.sld.cu/pdf/rpv/v32n1/rpv01117.pdfspa
dc.relation.referencesGasca-tuz C, Chel-guerrero L, Betancur-ancona D. Capacidad antibacteriana de fracciones peptídicas de frijol lima ( Phaseolus lunatus L .) obtenidas por hidrólisis enzimática . obtained by enzymatic hydrolysis . Aportación a la literatura científica : Introducción : Métodos : 2017;2(1):8–16.spa
dc.relation.referencesTang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry. 2018;154(May):94–105.spa
dc.relation.referencesGoyal RK, Mattoo AK. Multitasking antimicrobial peptides in plant development and host defense against biotic/abiotic stress. Plant Sci [Internet]. 2014;228:135–49. Available from: http://dx.doi.org/10.1016/j.plantsci.2014.05.012spa
dc.relation.referencesStotz HU, Thomson JG, Wang Y. Plant defensins: defense, development and application. Plant Signal Behav. 2009;4(11):1010–2.spa
dc.relation.referencesGoyal RK, Mattoo AK. Plant antimicrobial peptides. Host Def Pept Their Potential as Ther Agents. 2016;111–36.spa
dc.relation.referencesGames PD, daSilva EQG, Barbosa M de O, Almeida-Souza HO, Fontes PP, deMagalhães-Jr MJ, et al. Computer aided identification of a Hevein- like antimicrobial peptide of bell pepper leaves for biotechnological use. 49 BMC Genomics [Internet]. 2016;17(Suppl 12):1–13. Available from: http://dx.doi.org/10.1186/s12864-016-3332-8spa
dc.relation.referencesLacerda AF, Vasconcelos ÉAR, Pelegrini PB, Grossi de Sa MF. Antifungal defensins and their role in plant defense. Front Microbiol. 2014;5(APR):1–10.spa
dc.relation.referencesSegura A, Moreno M, García-Olmedo F. Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett. 1993;332(3):243–6.spa
dc.relation.referencesCarvalho A de O, Gomes VM. Role of plant lipid transfer proteins in plant cell physiology-A concise review. Peptides. 2007;28(5):1144–53.spa
dc.relation.referencesKovalskaya N, Hammond RW. Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif [Internet]. 2009;63(1):12–7. Available from: http://dx.doi.org/10.1016/j.pep.2008.08.013spa
dc.relation.referencesSegura A, Moreno M, Madueño F, Molina A, García-Olmedo F. Snakin-1, a Peptide from Potato That Is Active Against Plant Pathogens. Mol Plant- Microbe Interact. 2007;12(1):16–23.spa
dc.relation.referencesEscarleth I, Puentes C, Caballero IAD. Ciclótidos , proteínas circulares producidas por plantas con potencial farmacológico Cyclotides , circular proteins produced by plants with pharmacological potential. 2015;49(2):384–93.spa
dc.relation.referencesCools TL, Struyfs C, Cammue BP, Thevissen K. Antifungal plant defensins: Increased insight in their mode of action as a basis for their use to combat fungal infections. Future Microbiol. 2017;12(5):441–54.spa
dc.relation.referencesCampos ML, Lião LM, Alves ESF, Migliolo L, Dias SC, Franco OL. A structural perspective of plant antimicrobial peptides. Biochem J [Internet]. 2018;475(21):3359–75. Available from: http://biochemj.org/lookup/doi/10.1042/BCJ20180213spa
dc.relation.referencesChampoiseau PG, Jones JB, Allen C. Ralstonia solanacearum Race 3 Biovar 2 Causes Tropical Losses and Temperate Anxieties. Plant Heal Prog [Internet]. 2009;2(January). Available from: http://www.plantmanagementnetwork.org/php/elements/sum.aspx?id=778 5&photo=4419spa
dc.relation.referencesFlores-Cruz Z, Allen C. Ralstonia solanacearum Encounters an Oxidative Environment During Tomato Infection. Mpmi [Internet]. 2009;22(7):773– 782. Available from: http://apsjournals.apsnet.org/doi/pdf/10.1094/MPMI- 22-7-0773spa
dc.relation.referencesNaranjo Feliciano E, Martínez Zubiaur Y. Avances en el diagnóstico de la marchitez bacteriana (Ralstonia solanacearum): situación actual y perspectivas en Cuba. Rev Protección Veg [Internet]. 2013;28(3):160–70. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1010- 27522013000300001&lang=esspa
dc.relation.referencesValle T. Identificación y caracterización preliminar del agente causal de la mancha necrótica de las hojas agente causal de la mancha necrótica de las hojas. Cienc y Tecnol Agropecu. 2007;8(January 2008):22–5.spa
dc.relation.referencesMeng F. Ralstonia Solanacearum Species Complex and Bacterial Wilt Disease. J Bacteriol Parasitol [Internet]. 2013;04(02):2–5. Available from: https://www.omicsonline.org/ralstonia-solanacearum-species-complex- and-bacterial-wilt-disease-2155-9597.1000e119.php?aid=12400spa
dc.relation.referencesSegura A, Moreno M, Molina A, García-Olmedo F. Novel defensin subfamily from spinach (Spinacia oleracea). FEBS Lett. 1998;435(2– 3):159–62.spa
dc.relation.referencesLahaye T. Illuminating the molecular basis of gene-for-gene resistance; Arabidopsis thaliana RRS1-R and its interaction with Ralstonia solanacearum popP2. Trends Plant Sci. 2004;9(1):1–4.spa
dc.relation.referencesLiu G, Yang F, Li F, Li Z, Lang Y, Shen B, et al. Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant Gram-positive bacteria. Front Microbiol. 2018;9(MAY):1–14.spa
dc.relation.referencesCavanagh JP, Granslo HN, Fredheim EA, Christophersen L, Jensen PØ, Thomsen K, et al. Efficacy of a synthetic antimicrobial peptidomimetic versus vancomycin in a staphylococcus epidermidis device-related murine peritonitis model. J Antimicrob Chemother. 2013;68(9):2106–10.spa
dc.relation.referencesGao B, Xu J, del Carmen Rodriguez M, Lanz-Mendoza H, Hernández- Rivas R, Du W, et al. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie. 2010;92(4):350– 9.spa
dc.relation.referencesGracy J, Le-Nguyen D, Gelly JC, Kaas Q, Heitz A, Chiche L. KNOTTIN: The knottin or inhibitor cystine knot scaffold in 2007. Nucleic Acids Res. 2008;36(SUPPL. 1):314–9.spa
dc.relation.referencesBruix M, Jiménez MA, Santoro J, González C, Colilla FJ, Méndez E, et al. Solution Structure of γ1-H and γ1-P Thionins from Barley and Wheat Endosperm Determined by 1H-NMR: A Structural Motif Common to Toxic Arthropod Proteins. Biochemistry. 1993;32(2):715–24.spa
dc.relation.referencesAntimicrobianos S, Nacional I, Malbran DEIC, Aires B, De L, Molecular M, et al. Diseño y Evaluación de Nuevos Péptidos Antibacterianos : Actividad Comparativa Frente a Omiganan ® Pentahydrochloride. (2):27853.spa
dc.relation.referencesKhamis AM, Essack M, Gao X, Bajic VB. Distinct profiling of antimicrobial peptide families. Bioinformatics. 2015;31(6):849–56.spa
dc.relation.referencesOdintsova TI, Slezina MP, Istomina EA, Korostyleva T V., Kasianov AS, Kovtun AS, et al. Defensin-like peptides in wheat analyzed by whole- transcriptome sequencing: a focus on structural diversity and role in induced resistance. PeerJ [Internet]. 2019;7:e6125. Available from: https://peerj.com/articles/6125spa
dc.relation.referencesSathoff AE, Samac D. Antibacterial Activity of Plant Defensins. Mol Plant- 51 Microbe Interact. 2018;1–35.spa
dc.relation.referencesDayeong Kim, Nagasundarapandian Soundrarajan a JL, Cho H, Choi M, Cha S-Y, Byeongyong Ahn a HJ, Le MT, et al. crossm Genomewide Analysis of the Antimicrobial Peptides in Python Cathelicidins with Potent Antimicrobial. Am Soc Microbiol. 2017;61(9):1–12.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembmarchitez bacteriana
dc.subject.lembhomología
dc.subject.lembbioinformática
dc.subject.proposalpéptidos antimicrobianosspa
dc.subject.proposaldefensinasspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2019
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2019