Mostrar el registro sencillo del ítem

dc.contributor.advisorSánchez Mora, Ruth Mélida
dc.contributor.authorSilvestre Lagos, Karoll Astrid
dc.date.accessioned2022-10-03T21:23:07Z
dc.date.available2022-10-03T21:23:07Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/5677
dc.description.abstractEl trastorno por déficit de atención e hiperactividad (TDAH), es un trastorno del neurodesarrollo de inicio en la niñez, el cual afecta alrededor del 5% de los niños en todo el mundo, además presenta tres síntomas que son hiperactividad, impulsividad y déficit de atención; en cuanto a sus causas se han identificado factores neurobiológicos, ambientales y genéticos. El objetivo de este trabajo fue mostrar el Pez cebra como modelo de investigación para el estudio de TDAH, ya que este modelo biológico presenta genes ortólogos con el humano de importancia clínica en el TDAH, estos genes se clasifican según las tres hipótesis relacionadas con esta patología, que son la hipótesis dopaminérgica, serotoninérgica y noradrenérgica. Ahora bien la mutaciones en estos genes generan en el Pez cebra comportamientos similares a los vistos en el humano, y esto se determina por medio de distintos ensayos, como lo son el ensayo de locomoción, ensayo de campo abierto y ensayo de Tarea de tiempo de reacción en serie de 5 repeticiones (5-C5RTT), que junto a herramientas genéticas permitieron determinar la acción de fármacos agonistas y antagonistas de receptores D1 y D2 en la hiperactividad del Pez morfante para el gen lphn3.1, cuya mutación permite evaluar el comportamiento del Pez cebra tras la sensibilización de sus receptores. Por último el metabolito aurículasina, una isoflavona extraída de las raíces de Flemingia filiphinensis, reflejó un buen índice terapéutico al aumentar los niveles de DA y así lograr disminuir la hiperactividad ocasionada por la mutación del gen Period1b en el Pez cebraeng
dc.description.tableofcontentsTABLA DE CONTENIDO Introducción .... 9 1. Antecedentes....... 10 2. Marco teórico ...... 13 2.1 Trastorno por déficit de atención e hiperactividad (TDAH). 13 2.1.1 Diagnóstico del TDAH....... 14 2.1.2 Tratamiento....... 14 2.1.3 Etiología del TDAH. 15 2.2 Pez cebra (Danio rerio). 23 2.2.1 Características neuroanatómicas del pez cebra..... 24 2.2.2 Desarrollo del SNC en el pez cebra .... 24 2.2.3 Etapas de desarrollo del pez cebra 26 2.2.4 Principales Ventajas y limitaciones del modelo del pez cebra 26 3. Aproximación al diseño metodológico ........ 27 3.1 Tipo de investigación.... 27 3.2 Alcance de la investigación ..... 27 3.3 Procedimiento, técnica o método.......... 27 4. Resultados.......... 28 4.1 Genes ortólogos del pez cebra e hipótesis del TDAH... 29 4.1.1 Hipótesis dopaminérgica... 32 4.1.2 Hipótesis noradrenérgica .. 33 4.1.3 Hipótesis serotoninergica.. 33 4.2 Ensayos para determinar fenotipos del TDAH en el Pez cebra..... 34 4.2.1 Ensayo de locomoción ...... 34 4.2.2 Ensayo de campo abierto.. 35 4.2.3 Tarea de tiempo de reacción en serie de 5 repeticiones (5-C5RTT).... 36 4.3 Modelado del TDAH en el Pez cebra (Danio rerio) ....... 37 4.3.1 Evaluación de la acción fármacos en el Pez cebra para explicar fenotipos del TDAH 37 4.3.2 Evaluación de isoflavonas en el Pez cebra para explicar para tratar la hiperactividad en el TDAH ......... 40 5. Discusión . 42 6. Conclusiones ...... 45 Referencias bibliográficas . 46spa
dc.format.extent52p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titlePez cebra (Danio rerio) y su aplicación como modelo de investigación para el trastorno por déficit de atención e hiperactividad TDAHspa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotaspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesMahone E, Denckla M. Attention-Deficit/Hyperactivity Disorder: A Historical Neuropsychological Perspective. J Int Neuropsychol Soc [Internet] 2017 [Cited 5 Feb 2021]; 23 (916–929). Available in:: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724393/spa
dc.relation.referencesBonan C, Norton W. The utility of zebrafish as a model for behavioural genetics. Current Opinion in Behavioral Sciences [Internet] 2015 [Cited 5 feb 2021]; 2 (34-38), Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S2352154614000059spa
dc.relation.referencesSakai C, Ijaz S, Hoffman E. Zebrafish Models of Neurodevelopmental Disorders: Past, Present, and Future. Front Mol Neurosci [Internet] 2018 [Cited 10 Feb 2021]; 11 (294). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123572/spa
dc.relation.referencesDalla E, Mortimer N, Palladino V, Kittel-Schneider S, Lesch K, Reif A, et al. Crossspecies models of attention-deficit/hyperactivity disorder and autism spectrum disorder: lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatric Genetics [Internet] 2019 [Cited 10 Feb 2021]; 29 (1-17). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654943/spa
dc.relation.referencesCervantes-Henriquez M, Acosta-López J, Ahmad M, Sánchez-Rojas M, JiménezFigueroa G, Pineda-Alhucema W, et al. ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sci [Internet] 2021 [Cited 10 Feb 2021]; 11(7). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301925/spa
dc.relation.referencesRegan S, Hufgard J, Pitzer E, Sugimoto C, Hu Y, WilliamsM, et al. Knockout of latrophilin-3 in Sprague-Dawley rats causes hyperactivity, hyper-reactivity, underresponse to amphetamine, and disrupted dopamine markers. Neurobiol Dis. [Internet] 2019 [Cited 10 Feb 2021]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689430/spa
dc.relation.referencesMortimeret N, Ganster T, O'Leary A, Popp S, Freudenbergal F, Reif A. Dissociation of impulsivity and aggression in mice deficient for the ADHD risk gene Adgrl3: Evidence for dopamine transporter dysregulation. Neuropharmacology [Internet] 2019 [Cited 12 Feb 2021]; 156. Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0028390819300784spa
dc.relation.referencesvan der Voet M, Harich B, Franke B, Schenck A. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol Psychiatry [Internet] 2016 [Cited 13 feb 2021]; 21 (565–573). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4804182/spa
dc.relation.referencesCampbell P, Granato M. Zebrafish as a tool to study schizophrenia-associated copy number variants. Dis Model Mech [Internet] 2020 [Cited 14 feb 2021] 13 (4). Available in: https://journals.biologists.com/dmm/article/13/4/dmm043877/224285/Zebrafish-as-a-toolto-study-schizophreniaspa
dc.relation.referencesBrenner R, Oliveri A, Sinnott-Armstrong W, Levin E. Effects of Sub-Chronic Methylphenidate on Risk Taking and Sociability in Zebrafish (Danio rerio). Naunyn Schmiedebergs Arch Pharmacol [Internet] 2020 [Cited 14 feb 2021]; 393 (1373–1381). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7716188/spa
dc.relation.referencesDark C, Williams C, Bellgrove M, Hawi Z, Bryson-Richardson R. Functional validation of CHMP7 as an ADHD risk gene. Transl Psychiatry [Internet] 2020 [Cited 14 feb 2021]; 10. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648633/ 12. Drechsler R, Brem S, Brandeis D, Grünblatt E, Berger, Walitza S. ADHD: Current Concepts and Treatments in Children and Adolescents. Neuropediatrics [Internet] 2020 [Cited 15 feb 2021]; 51 (315–335). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508636/spa
dc.relation.referencesFaraone S. Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry [Internet] 2019 [Cited 15 feb 2021]; 24 (562–575). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477889/ 14. Puentes-Rozo P, Acosta-López J, Cervantes-Henríquez M, Martínez-Banfi M, MejiaSegura E, Sánchez-Rojas M, et al. Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells [Internet] 2019 [Cited 15 feb 2021]; 8 (907). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721689/spa
dc.relation.referencesvan der Meer D, Hoekstra P J, van Donkelaar M, Bralten J, Oosterlaan J, Heslenfeld D, et al. Predicting attention-deficit/hyperactivity disorder severity from psychosocial stress and stress-response genes: a random forest regression approach. Transl Psychiatry [Internet] 2017 [Cited 15 feb 2021]; 7. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5537639/spa
dc.relation.referencesDark C, Homman-Ludiye J, Bryson-Richardson R.The role of ADHD associated genes in neurodevelopment. Developmental Biology [Internet] 2018 [Cited 10 mar 2021]; 483 (69-83). Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0012160617306887spa
dc.relation.referencesBahn G, Lee Y, Yoo H, Kim E, Park S, Han D, et al. Development of the Korean Practice Parameter for Adult Attention-Deficit/Hyperactivity Disorder. Soa Chongsonyon Chongsin Uihak [Internet] 2020 [Cited 10 mar 2021]; 31(5–25). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324844/spa
dc.relation.referencesWolraich M, Hagan J, Allan C, Chan E, Davison D, Earls M, et al. Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Pediatrics [Internet] 2019 [Cited 10 mar 2021]; 144 (4). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7067282/spa
dc.relation.references. Franke B, Michelini G, Asherson P, Banaschewski T, Bilbow A, Buitelaar J. Live fast, die young? A review on the developmental trajectories of ADHD across the lifespan. Eur Neuropsychopharmacol [Internet] 2018 [Cited 10 mar 2021]; 28 (1059–1088). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6379245/spa
dc.relation.referencesCastells X, Blanco‐Silvente L, Cunill R. Amphetamines for attention deficit hyperactivity disorder (ADHD) in adults. Cochrane Database Syst Rev [Internet] 2018 [Cited 11 mar 2021]; 2018 (8). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513464/spa
dc.relation.referencesFaraone S, Banaschewski T, Coghill D, Zheng Y, Biederman J, Bellgrove M, et al. The World Federation of ADHD International Consensus Statement: 208 Evidence-based conclusions about the disorder. Neuroscience & Biobehavioral Reviews [Internet] 2021 [Cited 11 mar 2021]. Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S014976342100049Xspa
dc.relation.referencesMiranda P, Cox C, Alexander M, Danev S, Lakey J. In Quest of Pathognomonic/Endophenotypic Markers of Attention Deficit Hyperactivity Disorder (ADHD): Potential of EEG-Based Frequency Analysis and ERPs to Better Detect, Prevent and Manage ADHD. Med Devices [Internet] 2020 [Cited 11 mar 2021]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7250294/spa
dc.relation.referencesOsland S, Steeves T, Pringsheim T. Pharmacological treatment for attention deficit hyperactivity disorder (ADHD) in children with comorbid tic disorders. Cochrane Database Syst Rev [Internet] 2018 [Cited 11 mar 2021]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6513283/spa
dc.relation.references. Champ R, Adamou M, Tolchard B. The impact of psychological theory on the treatment of attention deficit hyperactivity disorder (ADHD) in adults: A scoping review. PLoS One[Internet] 2021 [Cited 11 mar 2021]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691636/spa
dc.relation.referencesDunn G, Nigg J, Sullivan E. Neuroinflammation as a Risk Factor for Attention Deficit Hyperactivity Disorder. Pharmacol Biochem Behav [Internet] 2019 [Cited 11 mar 2021]; 182 (22–34). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6855401/spa
dc.relation.referencesPosner J, Polanczyk G, Sonuga-Barke E. Attention-deficit hyperactivity disorder. Lancet [Internet] 2020 [Cited 12 mar 2021]; 395 (450–462). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880081/spa
dc.relation.referencesNúñez-Jaramillo L, Herrera-Solís A, Herrera-Morales W. ADHD: Reviewing the Causes and Evaluating Solutions. J Pers Med [Internet] 2021 [Cited 12 mar 2021]; 11(166). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7999417/spa
dc.relation.referencesYadav S, Bhat A, Hashem S, Nisar S, Kamal M, Syed N, et al. Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry [Internet] 2021 [Cited 12 mar 2021]; 11(349). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179928/spa
dc.relation.referencesvan der Meer D, Hartman C, van Rooij D, Franke B, Heslenfeld D, Oosterlaan J, Faraone S, et al. Effects of dopaminergic genes, prenatal adversities, and their interaction on attention-deficit/hyperactivity disorder and neural correlates of response inhibition. J Psychiatry Neurosci [Internet] 2017 [Cited 12 mar 2021]; 42 (113–121). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5373700/spa
dc.relation.referencesSingh A, Yeh C, Verma N, Das A. Overview of Attention Deficit Hyperactivity Disorder in Young Children. Health Psychol Res [Internet] 2015 [Cited 12 mar 2021]; 3 (2115). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768532/spa
dc.relation.references. Banaschewski T, Becker K, Döpfner M, Holtmann M, Rösler M, Romanos M. AttentionDeficit/Hyperactivity Disorder, A Current Overview. Dtsch Arztebl Int [Internet] 2017 [Cited 12 mar 2021]; 114 (149–159). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378980/spa
dc.relation.referencesLuo Y, Weibman D, Halperin J, Li X. A Review of Heterogeneity in Attention Deficit/Hyperactivity Disorder (ADHD). Front Hum Neurosci [Intermet] 2019 [Cited 12 feb 2021]; 13. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378275/spa
dc.relation.referencesSingh P. Network and pathway enrichment analysis of Attention Deficit/Hyperactivity Disorder candidate genes. Indian J Psychiatry [Intermet] 2020 [Cited 20 feb 2021]; 62 (400-406). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7597701/spa
dc.relation.referencesBonvicini C, Faraone S, Scassellati C. Common and specific genes and peripheral biomarkers in children and adults with Attention-Deficit/Hyperactivity Disorder. World J Biol Psychiatry [Internet] 2018 [Cited 23 feb 2021]; 19 (80-100). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568996/spa
dc.relation.referencesKlein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, et al. Brain imaging genetics in ADHD and beyond – mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev. [Internet] 2017 [Cited 25 feb 2021]; 80 (115– 155.). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6947924/spa
dc.relation.referencesGold M, MD, Blum K, Oscar-Berman M, Braverman E. Low Dopamine Function in Attention Deficit/Hyperactivity Disorder: Should Genotyping Signify Early Diagnosis in Children? Postgrad Med [Internet] 2014 [Cited 25 feb 2021]; 126 (153-177). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074363/spa
dc.relation.referencesde la Peña I, Pan M, Thai C, Alisso T. Attention-Deficit/Hyperactivity Disorder Predominantly Inattentive Subtype/Presentation: Research Progress and Translational Studies. Brain Sci [Internet] 2020 [Cited 27 feb 2021]; 10 (292). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287898/spa
dc.relation.referencesGallo E, Posner J. Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms. Lancet Psychiatry [Internet] 2016 [Cited 27 feb 2021]; 3 (555-567). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893880/spa
dc.relation.references. Bonvicini C, Cortese S, Maj C, Baune B, Faraone S, Scassellati C. DRD4 48 bp multiallelic variants as age-population-specific biomarkers in attention-deficit/hyperactivity disorder. Transl Psychiatry [Internet] 2020 [Cited 28 feb 2021]; 10 (70). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7031506/spa
dc.relation.referencesPinto R, Asherson P, Ilott N, Cheung M, Kuntsi J. Testing for the mediating role of endophenotypes using molecular genetic data in a twin study of ADHD traits. Am J Med Genet B Neuropsychiatr Genet [Internet] 2016 [Cited 28 feb 2021]; 171 (982–992). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5031223/spa
dc.relation.referencesNemoda Z, Angyal N, Tarnok Z, Birkas E, Bognar E, Sasvari-Szekely M, et al. Differential Genetic Effect of the Norepinephrine Transporter Promoter Polymorphisms on Attention Problems in Clinical and Non-clinical Samples. Front Neurosci [Internet] 2018 [Cited 28 feb 2021]; 12 (1051). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339888/spa
dc.relation.referencesSigurdardottir H, Kranz G, Rami-Mark C, James G, Vanicek T, Gryglewski G, et al. Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity–impulsivity symptoms in ADHD measured with PET. Mol Psychiatry [Internet] 2021 [Cited 28 feb 2021]; 26 (1009–1018). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7910214/spa
dc.relation.references. Elsayed N, Yamamoto K, Froehlich T. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs [Internet] 2020 [Cited 28 feb 2021]; 34 (389–414). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8083895spa
dc.relation.referencesHuang H, Wu L, Yu S, Wu B, Lua A, Lee S, et al. The Alpha-2A Adrenergic Receptor Gene -1291C/G Single Nucleotide Polymorphism is Associated with the Efficacy of Methylphenidate in Treating Taiwanese Children and Adolescents with Attention-Deficit Hyperactivity Disorder. Psychiatry Investig [Internet] 2018 [Cited 3 mar 2021]; 15 (306- 312). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5900374/spa
dc.relation.referencesPark J, Son D, Kim Y, Han D. Brain Network Connectivity and Association with Catechol-O-Methyltransferase Gene Polymorphism in Korean Attention-Deficit Hyperactivity Disorder Children. Psychiatry Investig [Internet] 2020 [Cited 3 mar 2021]; 17 (925–933). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538244/spa
dc.relation.referencesAbraham E, Scott M, Blair C. Catechol-O-methyltransferase Val158Met Genotype and Early-Life Family Adversity Interactively Affect Attention-Deficit Hyperactivity Symptoms Across Childhood. Front Genet [Internet] 2020 [Cited 5 mar 2021]; 11 (724). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381281/spa
dc.relation.referencesNorton W. Toward developmental models of psychiatric disorders in zebrafish. Front Neural Circuits [Internet] 2013 [Cited 6 mar 2021]; 7 (79). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636468/spa
dc.relation.referencesKalueff A, Stewart A, Gerlai R. Zebrafish as an emerging model for studying complex brain disorders. Elsevier [Internet] 2014 [Cited 6 mar 2021]; 35 (63-75). Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0165614713002290spa
dc.relation.referencesBradford Y, Toro S, Ramachandran S, Ruzicka L, Howe D, Eagle A. et al. Zebrafish Models of Human Disease: Gaining Insight into Human Disease at ZFIN. ILAR J [Internet] 2017 [Cited 6 mar 2021]; 58 (4–16). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5886338/spa
dc.relation.referencesImai Y, Olaya I, Sakai N, Burgess S. Meiotic Chromosome Dynamics in Zebrafish. Front Cell Dev Biol [Internet] 2021 [Cited 6 mar 2021]; Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531508/spa
dc.relation.referencesShin M, Field T, Stucky C, Furgurson M, Johnson M. Ex vivo measurement of electrically evoked dopamine release in zebrafish whole brain. ACS Chem Neurosci [Internet] 2018 [Cited 6 mar 2021]; Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846466/spa
dc.relation.referencesVaz R, Outeiro T, Ferreira J. Zebrafish as an Animal Model for Drug Discovery in Parkinson’s Disease and Other Movement Disorders: A Systematic Review. Front Neurol [Internet] 2018 [Cited 6 mar 2021]; Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5992294/spa
dc.relation.referencesKhan K, Collier A, Meshalkina D, Kysil E, Khatsko S, Kolesnikova T, et al. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol [Internet] 2017 [Cited 7 mar 2021]; 174 (1925–1944). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466539/spa
dc.relation.referencesVaz R, Hofmeister W, Lindstrand A. Zebrafish Models of Neurodevelopmental Disorders: Limitations and Benefits of Current Tools and Techniques. Int J Mol Sci [Internet] 2019 [Cited 10 mar 2021]; 20 (1296). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6471844/spa
dc.relation.referencesde Abreu M, Genario R, Giacomin A, Demin K, Lakstygal A, Amstislavskaya T, et al. Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience [Internet] 2020 [Cited 12 mar 2021]; 445 (3-11). Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0306452219306074spa
dc.relation.referencesRodríguez C. Efecto de la temperatura en la determinación sexual durante la fase de desarrollo del zebrafish (Danio rerio). [Ingeniería de Sistemas Biológicos]. Barcelona: Universitat Politècnica de Catalunya Universitat Politècnica de Catalunya; 2016.spa
dc.relation.referencesStewart A, Braubach O, Spitsbergen J, Gerlai R, Kalueff A. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci [Internet] 2015 [Cited 15 mar 2021]; 37 (264–278). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039217/spa
dc.relation.referencesFontana B, Franscescon F, Rosemberg D, Norton W, Kalueff A, Parker M. Zebrafish models for attention deficit hyperactivity disorder (ADHD). Neuroscience & Biobehavioral Reviews [Internet] 2019 [Cited 20 mar 2021]; 100 (9-18). Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0149763418308807spa
dc.relation.referencesCannon S, Barone H, Kleppe R, Betari N, Reif A, Haavik J. ADHD symptoms in neurometabolic diseases: Underlying mechanisms and clinical implications. [Internet] 2022 [Cited 20 mar 2021]; 132 (838-856). Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0149763421005054spa
dc.relation.referencesHorzmann K, Freeman L. Zebrafish Get Connected: Investigating Neurotransmission Targets and Alterations in Chemical Toxicity. Toxics [Internet] 2016 [Cited 20 mar 2021]; 4 (19). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5515482/spa
dc.relation.referencesLohr K, Masoud S, Salahpour A, Miller G. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci [Internet] 2017 [Cited 22 abr 2021]; 45 (20–33). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5209277/spa
dc.relation.referencesBadgaiyan R, Sinha S, Sajjad M, Wack D. Attenuated Tonic and Enhanced Phasic Release of Dopamine in Attention Deficit Hyperactivity Disorder. PLoS One [Internet] 2015 [Cited 22 abr 2021]; 10 (9). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589406/spa
dc.relation.referencesAboitiz F, Ossandón T, Zamorano F, Billeke P. Balance en la cuerda floja: la neurobiología del trastorno por déficit atencional e hiperactividad. Revista Médica Clínica Las Condes [Internet] 2012 [Citado 28 abr 2021]; 23 ( 559-565). Tomado de: https://www.sciencedirect.com/science/article/pii/S0716864012703504spa
dc.relation.referencesAboitiz F, Ossandón T, Zamorano F, Palma B, Carrasco X. Irrelevant stimulus processing in ADHD: catecholamine dynamics and attentional networks. Front Psychol [Internet] 2014 [Cited 5 may 2021]; 5 (183). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3972460/spa
dc.relation.referencesGrünblatt E, Werling A, Roth A, Romanos M, Walitza S. Association study and a systematic meta-analysis of the VNTR polymorphism in the 3′-UTR of dopamine transporter gene and attention-deficit hyperactivity disorder. J Neural Transm (Vienna) [Internet] 2019 [Cited 6 may 2021]; 126 (517–529). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456487spa
dc.relation.referencesEgroo M, Koshmanov E, Vandewalle G, Jacobs H. Importance of the locus coeruleusnorepinephrine system in sleep-wake regulation: Implications for aging and Alzheimer's disease. Sleep Medicine Reviews [Internet] 2022 [Cited 15 may 2021]; 62 (101-592).Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S1087079222000053spa
dc.relation.referencesChristiansen L, Beck M, Bilenberg, Wienecke J, Astrup A, Lundbye-Jensen J. Effects of Exercise on Cognitive Performance in Children and Adolescents with ADHD: Potential Mechanisms and Evidence-based Recommendations. J Clin Med [Internet] 2019 [Cited 15 may 2021]; 8 (841). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6617109/spa
dc.relation.referencesThakur G, Sengupta S, Grizenko N, Choudhry Z, Joober R. Comprehensive Phenotype/Genotype Analyses of the Norepinephrine Transporter Gene (SLC6A2) in ADHD: Relation to Maternal Smoking during Pregnancy. PLoS One [Internet] 2012 [Cited 20 may 2021]; 7 (11). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502190/spa
dc.relation.references. Elsayed N, Yamamoto K, Froehlich T. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs [Internet] 2020 [Cited 20 may 2021]; 34 (389– 414). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928286/spa
dc.relation.referencesBanerjee E, Nandagopal K. Does serotonin deficit mediate susceptibility to ADHD?. Neurochemistry International [Internet] 2015 [Cited 27 may 2021]; 82 (52-68). Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0197018615000212spa
dc.relation.referencesToshchakova V, Bakhtiari Y, Kulikov A, Gusev S, Trofimova M, Fedorenko O, et al. Association of Polymorphisms of Serotonin Transporter (5HTTLPR) and 5-HT2C Receptor Genes with Criminal Behavior in Russian Criminal Offenders. Neuropsychobiology [Internet] 2018 [Cited 28 may 2021]; 75 (200–210). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981829/spa
dc.relation.referencesHwang I, Lim M, Kwon H, Jin H. Association of Monoamine Oxidase A (MAOA) Gene uVNTR and rs6323 Polymorphisms with Attention Deficit and Hyperactivity Disorder in Korean Children. Medicina (Kaunas) [Internet] 2018 [Cited 1 jun 2021]; 54 (32). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122096/spa
dc.relation.referencesIngebretson J, Masino M. Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies. Frontiers in Neural Circuits [Internet] 2013 [Cited 18 jun 2021]. Available in: https://www.frontiersin.org/articles/10.3389/fncir.2013.00109/fullspa
dc.relation.referencesRoberts A, Alzagatiti J, Ly D, Chornak J, Ma Y, Razee A, et al. Induction of Short-Term Sensitization by an Aversive Chemical Stimulus in Zebrafish Larvae. eNeuro [Internet] 2020 [Cited 26 jun 2021]; 7 (6). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729299/spa
dc.relation.referencesSiregar P, Audira G, Feng L, Lee J, Santoso F, Yu W, et al. Pharmaceutical Assessment Suggests Locomotion Hyperactivity in Zebrafish Triggered by Arecoline Might Be Associated with Multiple Muscarinic Acetylcholine Receptors Activation. Toxins (Basel) [Internet] 2021 [Cited 26 jun 2021]; 13 (259). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066688/spa
dc.relation.references. Hussain A, Audira G, Siregar P, Lin Y, Villalobos O, Villaflores O, et al. Waterborne Exposure of Paclobutrazol at Environmental Relevant Concentration Induce Locomotion Hyperactivity in Larvae and Anxiolytic Exploratory Behavior in Adult Zebrafish. Int J Environ Res Public Health [Internet] 2020 [Cited 26 jun 2021]; 17 (4632). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369995spa
dc.relation.referencesSouza T, Franscescon F, Stefanello F, Müller T, Santos L, Rosemberg D. Acute effects of ethanol on behavioral responses of male and female zebrafish in the open field test with the influence of a non-familiar object. Behavioural Processes [Internet] 2021 [Cited 27 jun 2021]; 191. Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0376635721001583spa
dc.relation.referencesMidttun H, Vindas M, Nadler L, Overli O, Johansen I. Behavioural effects of the common brain-infecting parasite Pseudoloma neurophilia in laboratory zebrafish (Danio rerio). Sci Rep [Internet] 2020 [Cited 5 jul 2021]; 10 (8083). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7228949/spa
dc.relation.referencesBühler A, Carl M. Zebrafish Tools for Deciphering Habenular Network-Linked Mental Disorders. Biomolecules [Internet] 2021 [ Cited 15 jul 2021]; 11 (324). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7924194/spa
dc.relation.references. Wang Z, Zhao H, Xu Y, Zhao J, Song Z, Bi Y, et al. Early-life lead exposure induces long-term toxicity in the central nervous system: From zebrafish larvae to juveniles and adults. Science of The Total Environment [Internet] 2022 [Cited 24 jun 2021]; 804. Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0048969721052621spa
dc.relation.referencesMeshalkina D, Kizlyk M, Kysil E, Collier A, Echevarria D, Abreu M, et al. Understanding zebrafish cognition. Behavioural Processes [Internet] 2017 [Cited 25 jul 2021]; 141 (229- 241). Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0376635716303825spa
dc.relation.references. Parker M, Brock A, Sudwarts A, Brennan C. Atomoxetine reduces anticipatory responding in a 5-choice serial reaction time task for adult zebrafish. Psychopharmacology [Internet] 2014 [Cited 2 ago 2021]; 231 (2671–2679). Available in: https://ezproxy.unicolmayor.edu.co:2425/article/10.1007/s00213-014-3439-zspa
dc.relation.references. Moulton J. Using Morpholinos to Control Gene Expression. Curr Protoc Nucleic Acid Chem [Internet] 2017 [Cited 10 ago 2021]; 68 (4301–43029). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162182/spa
dc.relation.referencesOliveri A, Levin E. Dopamine D1 and D2 Receptor Antagonism During Development Alters Later Behavior in Zebrafish. Behav Brain Res [Internet] 2019 [Cited 10 ago 2021]; 356 (250–256). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192051/spa
dc.relation.references. Lange M, Norton W, Coolen M, Chaminade M, Merker S, Proft F, et al. The ADHDsusceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Molecular Psychiatry [Internet] 2012 [Cited 15 ago 2021]; 17 (946–954). Available in: https://ezproxy.unicolmayor.edu.co:2395/articles/mp201229spa
dc.relation.referencesLange M, Froc C, Grunwald H, Norton W, Bally-Cuif L. Pharmacological analysis of zebrafish lphn3.1 morphant larvae suggests that saturated dopaminergic signaling could underlie the ADHD-like locomotor hyperactivity. Progress in Neuro-Psychopharmacology and Biological Psychiatry [Internet] 2018 [Cited 20 ago 2021]; 84 (181-189). Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0278584617307339spa
dc.relation.referencesKřížová L, Dadáková K, Kašparovská J, Kašparovský T. Isoflavones. Molecules [Internet] 2019 [Cited 2 sep 2021]; 24 (1076). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6470817/spa
dc.relation.referencesKim I. Current Perspectives on the Beneficial Effects of Soybean Isoflavones and Their Metabolites for Humans. Antioxidants [Internet] 2021 [Cited 5 sep 2021]; 10 (1064). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301030/spa
dc.relation.referencesVilor‐Tejedor N, Alemany S, Cáceres A, Bustamante M, Mortamais M, Pujol J, et al. Sparse multiple factor analysis to integrate genetic data, neuroimaging features, and attention‐deficit/hyperactivity disorder domains. Int J Methods Psychiatr Res [Internet] 2018 [Cited 6 sep 2021]; 27 (1738). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6877273/spa
dc.relation.referencesHuang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, et al. Circadian Modulation of Dopamine Levels and Dopaminergic Neuron Development Contributes to Attention Deficiency and Hyperactive Behavior. Journal of Neuroscience [Internet] 2015 [Cited 7 sep 2021]; 35 (2572-2587). Available in: https://www.jneurosci.org/content/35/6/2572spa
dc.relation.referencesWang T, Liuc Y, Liu H, Li C, Wang Y. Auriculasin from Flemingia philippinensis roots shows good therapeutic indexes on hyperactive behavior in zebrafish. Biochemical and Biophysical Research Communications [Internet] 2018 [Cited 21 sep 2021]; 503 (1254- 1259). Available in: https://ezproxy.unicolmayor.edu.co:2163/science/article/pii/S0006291X18315286spa
dc.relation.referencesVander C,Siciliano C, Tye K. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res [Internet] 2019 [15 ene 20212]; 1713 (16–31). Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7575248/spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembSerotoninérgica y noradrenérgica
dc.subject.lembDopamina
dc.subject.lembEnsayos
dc.subject.proposalTDAHspa
dc.subject.proposalPez cebraspa
dc.subject.proposalHipótesis dopaminérgicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022