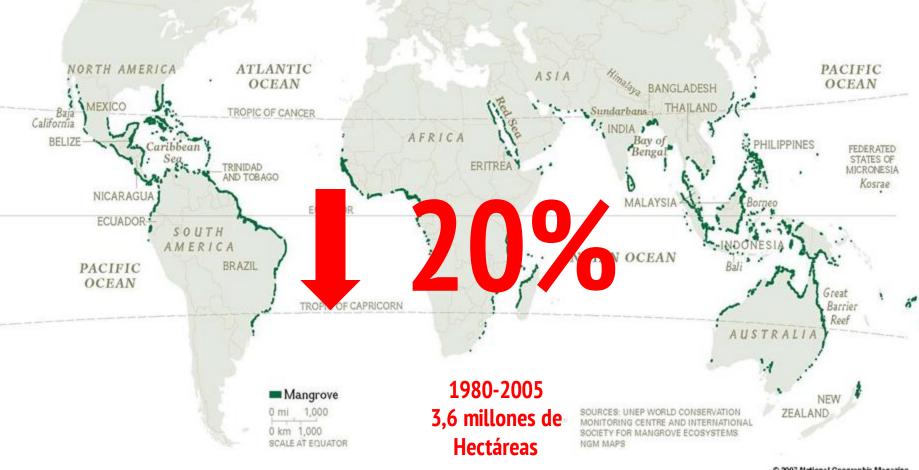

Efecto de la salinidad sobre genes asociados a ciclos biogeoquímicos del manglar de la desembocadura del Río Ranchería, La Guajira.

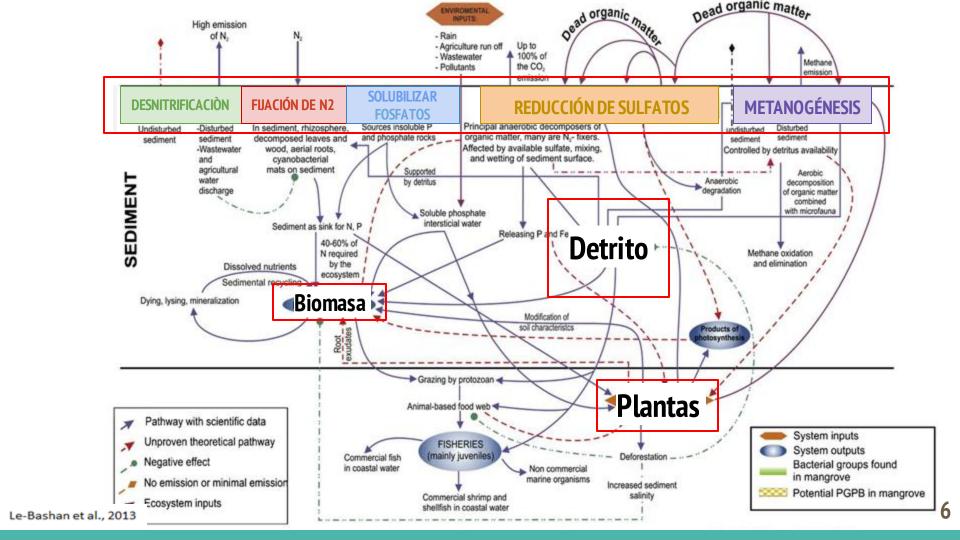

Angie Vanessa Sandoval Maria Camila Rodelo Bernal

ASESORES

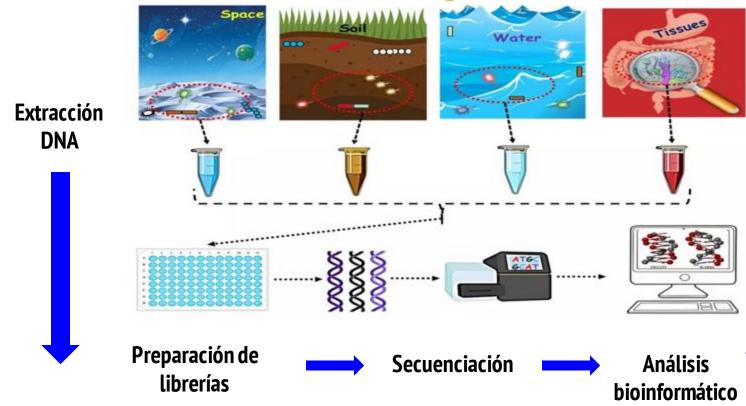
PhD. MSc. Javier Vanegas Guerrero PhD. Martha Lucía Posada Buitrago

Introducción

© 2007 National Geographic Magazine


Porcentaje de pérdida de manglar

57%


Hectáreas en 1960 501.300

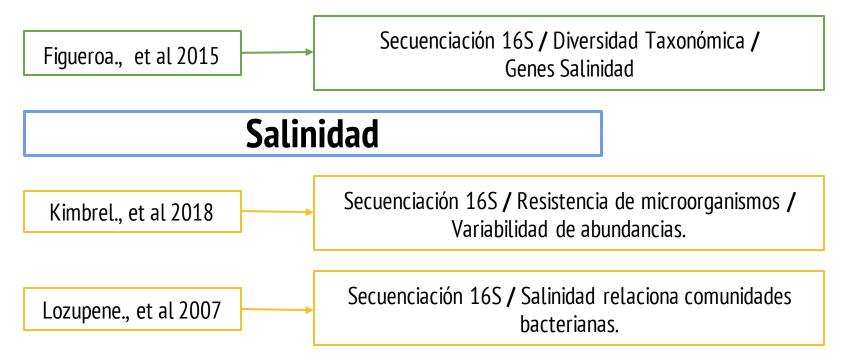
Hectáreas en 2011 213.000

Metagenómica

Limpieza Ensamblaje Alineamiento Anotación

Antecedentes

Metagenómica en manglar


Antecedentes

Ciclos biogeoquímicos en manglar

Antecedentes

Salinidad en manglar

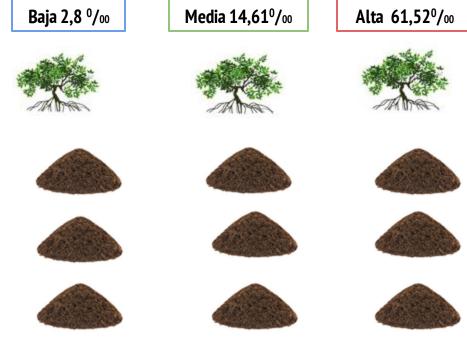
Objetivos

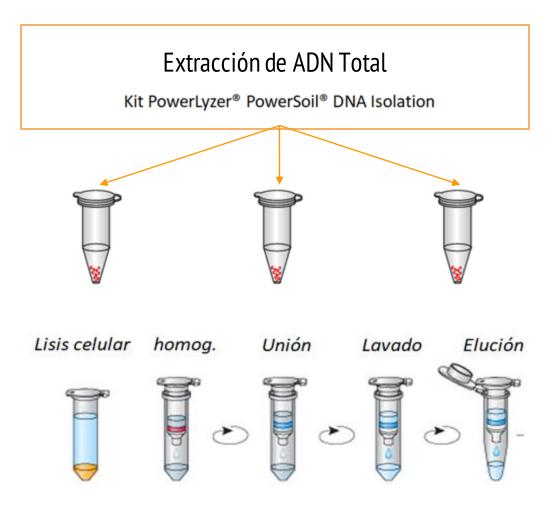
GENERAL

Determinar el efecto de la salinidad sobre genes asociados a ciclos biogeoquímicos del Nitrógeno, Azufre y Metano del manglar de la desembocadura del Río Ranchería, La Guajira; mediante un análisis metagenómico.

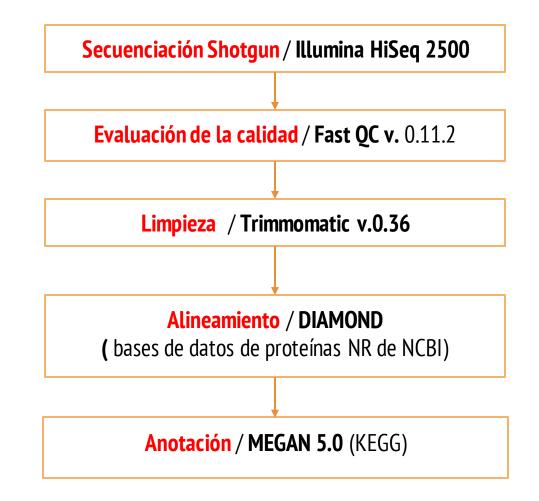
ESPECÍFICOS

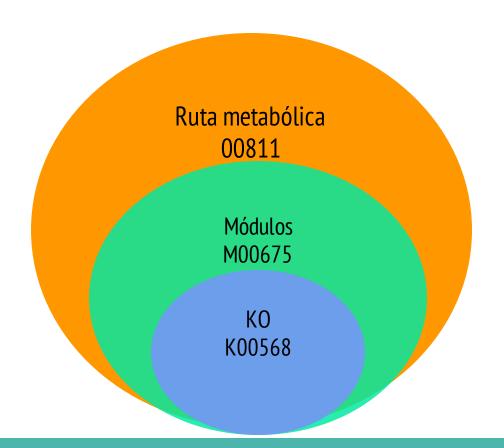
1. Determinar los genes más abundantes asociados a ciclos biogeoquímicos.


2. Detectar las abundancias diferencialmente de los genes asociados a ciclos biogeoquímicos.


3. Proponer genes marcadores de salinidad en cada ciclo biogeoquímico.

Metodología

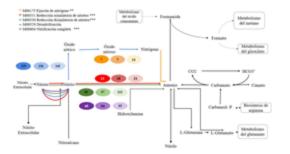

Muestras de suelo rizosférico de *Avicennia germinans* en tres puntos contrastantes de salinidad



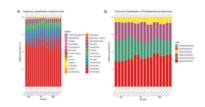
Análisis Bioinformático

Base de datos KEGG

ко	gi_4A_R1_8(gi_4A_R2_	81 gi_4B_R1_8	gi_4B_R2_8	gi_4C_R1_8	gi_4C_R2_8	gi_2A_R1_8	gi_2A_R2_8(gi_2B_R1_8(gi_2B_R2_8(g	i_2C_R1_8(gi_2C_R2_8(gi_3A_R1_8	gi_3A_R2_8(gi_3B_R1_8(gi_3B_R2_8(gi	_3C_R1_8(g	_3C_R2_8
K16157	0		0 1	1	3	2	1	3	3	3	1	1	0	1	1	2	3	3
K10944	1		1 1	1 2	2 2	1	. 0	0	2	1	1	2	0	3	0	3	1	0
K10945	0		1 2	2	1	3	1	1	0	1	1	0	1	1	2	0	2	1
K10946	0		1 0) (1	1	0	0	1	2	1	0	1	0	1	0	2	2
K14028	13	2	1 30	26	5 14	15	15	6	17	30	23	22	12	14	16	6	19	14
K16254	0		0 1		0	0	0	0	0	0	0	0	0	1	0	0	1	2
K16255	0		0 0) (0		1	3	1	0	0	0	0	0	0	0	1	0
K14029	0		0 0) (0		1	1	0	3	0	2	0	1	0	0	0	0
K16257	0		0 1	1 2	2 2	2	1	0	2	1	0	0	0	0	0	0	1	2
K16258	0		0 0) (0		0	0	0	0	0	0	0	0	0	0	1	0
K16259	0		0 0) (0	0	0	0	0	1	1	0	1	0	0	0	0	1
K16260	0		0 0) (0	0	0	0	1	1	0	0	0	0	0	0	0	0
K00148	19	3	2 36	38	55	54	27	20	66	57	40	37	36	61	64	64	50	43
K17067	0		0 0) (1		1	0	0	0	2	5	1	4	1	1	4	2
K03396	9	1	3 18	13	12	7	10	5	15	18	22	19	9	13	16	13	19	21
K00121	331	73	5 751	689	732	707	391	343	720	660	764	712	538	930	883	865	973	848
K01070	28	6	0 78	65	73	84	33	42	52	61	92	82	51	119	111	125	75	102
K00122	144	25	4 280	273	3 291	275	165	172	323	320	363	378	178	366	313	317	336	377
K00123	913	180	1 1770	1714	1903	1818	886	876	1965	1967	2179	2123	1371	2554	2577	2458	2503	2520
K00124	243	40	7 436	455	446	436	228	228	492	487	546	505	376	719	718	698	714	669
K00127	8	2	0 21	13	3 20	14	7	10	17	16	15	16	10	21	22	28	15	24
K00126	0		0 0) (0		0	0	0	0	0	0	0	1	0	0	0	0
K00125	0		1 0) (0	0	1	0	0	0	1	1	1	1	1	0	0	0
K05299	8		9 10	7	5	10	5	4	4	3	11	4	0	3	3	6	9	8
K15022	6	1	3 4	10) 4	4	3	4	6	3	4	8	11	21	34	31	14	11
K00192	0		0 0) (1		0	0	0	0	0	1	0	0	0	0	0	0
K00197	12	2	1 15	5	5 4	10	8	7	10	8	24	17	8	18	6	5	22	26
K00194	1		2 1		0	2	1	1	1	0	1	0	2	2	0	0	2	4
K00198	36	6	6 34	43	60	42	25	24	33	33	77	73	18	37	28	14	85	79


1. Objetivo

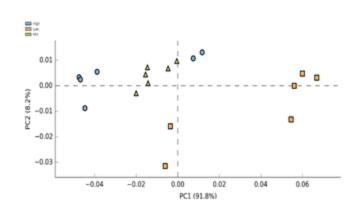
Abundancia

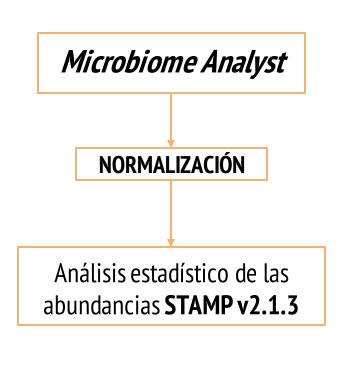

Microbiome Analyst

NORMALIZACIÓN

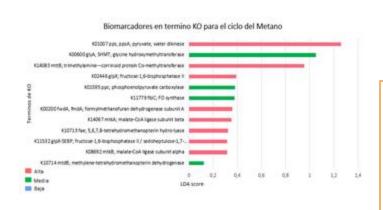
Reconstrucción de rutas metabólicas

Abundancias taxonómicas

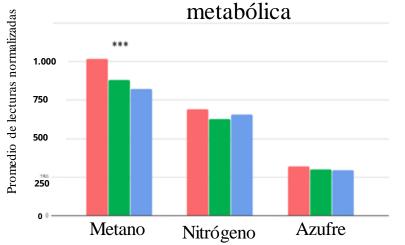



Asociación taxonomía con cada proceso ciclo biogeoquímico

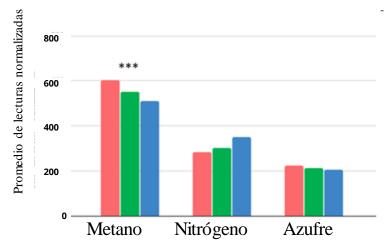
2. Objetivo


Diferencias entre salinidades

3. Objetivo


Biomarcadores

Resultados


A. Promedio de lecturas por ruta metabólica

Rutas Metabolicas

B. Promedio de lecturas módulos

Rutas Metabolicas

Representatividad 86.8% Ciclo del Metano Alta Media Baja 0.015 0 0.010 0.005 PC2 (9.9%) 8 0.000 -0.005 Δ **•** • -0.010 Δ

-0.01

PC1 (76.9%)

0.00

0.01

0.02

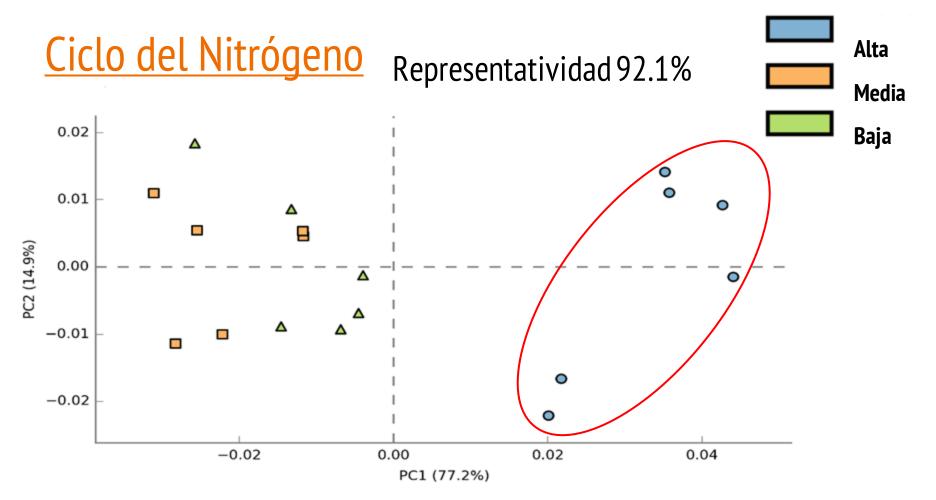
0.03

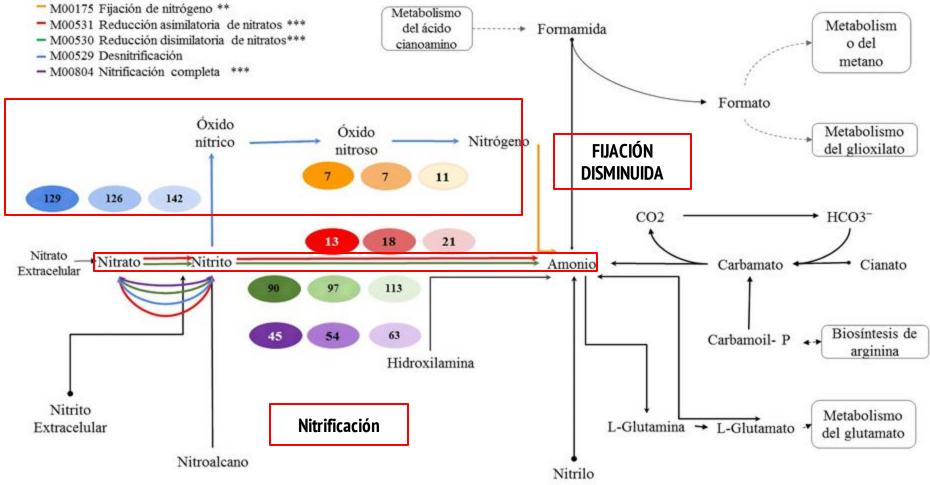
-0.015

-0.05

-0.04

-0.03


-0.02



Géneros asociados al Ciclo del Metano

Género	Salinidad
Methylocystis	Ваја
Methyloversatilis	Ваја
Methylibium	Ваја

Géneros asociados al Ciclo del Nitrógeno

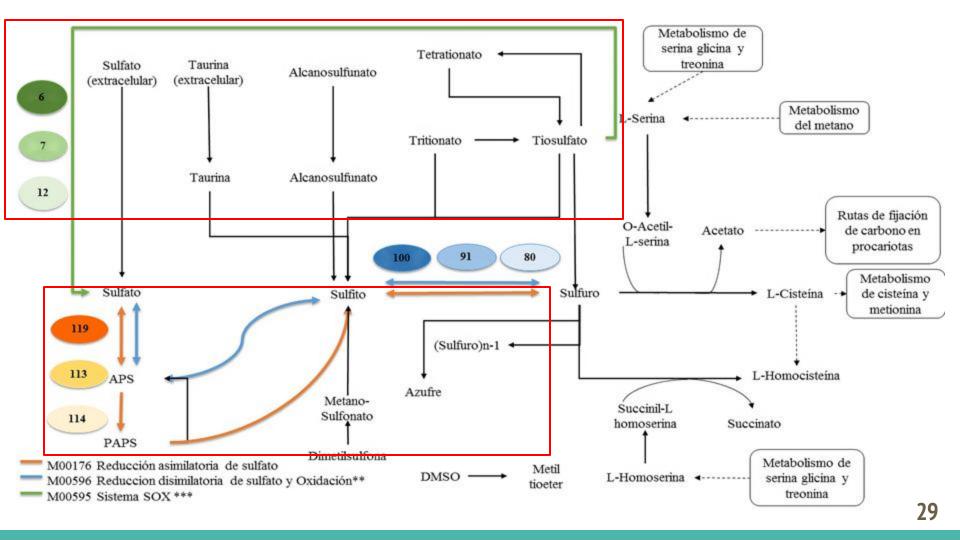
Géneros Diazotrofos	Salinidad
Azospirillum	Alta
Rhodospirillum	Alta
Pseudomonas	Alta

Géneros Desnitrificadores	Salinidad
Nitrospira	Alta
Nitrosococcus	Alta
Nitrospina	Alta

Ciclo del Azufre Alta Representatividad 100% Media Baja 0.01 0.00 PC2 (8.2%) Δ -0.01-0.02-0.03

0.04

0.06


0.00

PC1 (91.8%)

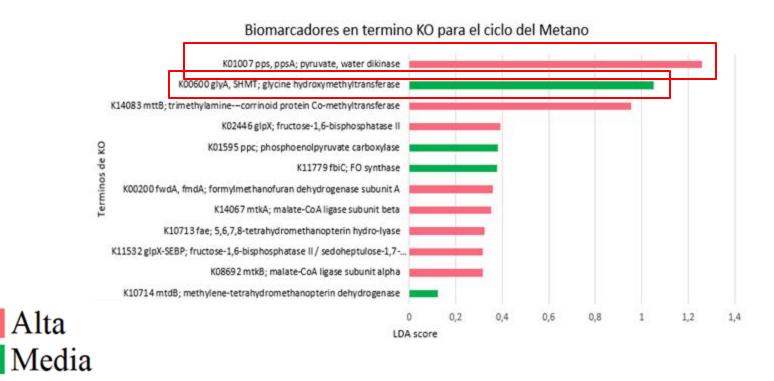
0.02

-0.02

-0.04

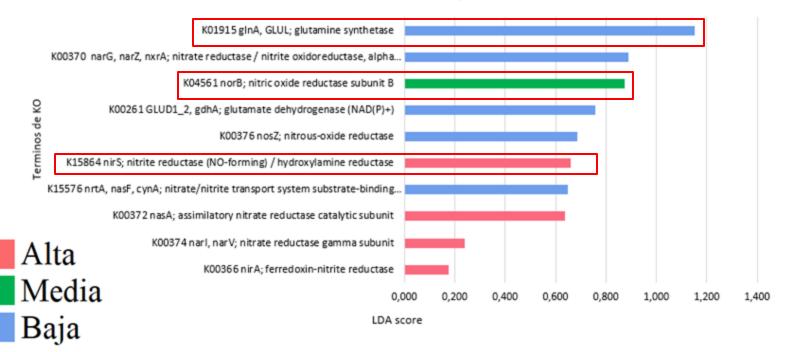
Géneros asociados al Ciclo del Azufre

70 Géneros

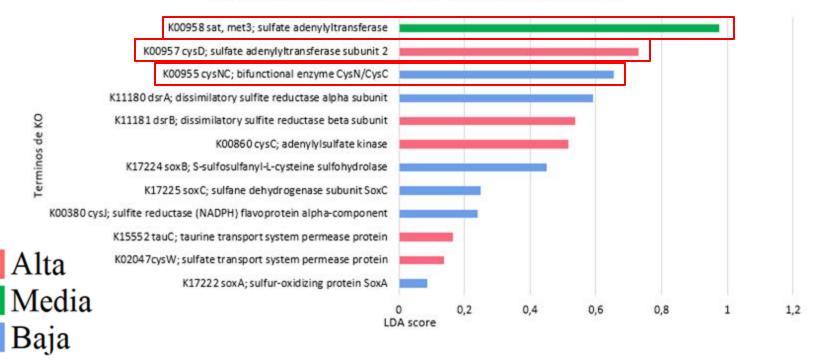

Reductores sulfato y Oxidantes del Azufre 62.44% tuvieron Diferencias Significativas

Reductores de sulfato	Salinidad
Desulfobulbus	Alta
Desulfosarcina	Alta
Desulfatiglans	Alta

Oxidantes azufre	Salinidad			
Thioalkalivibrio	Alta			
Thioploca	Alta			
Thermithiobacillus	Alta			


Biomarcadores

Salinidad	Salinidad	Salinidad
Alta	Media	Baja
17	6	11

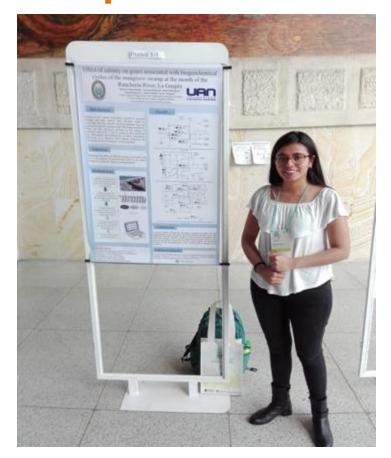


Baja

Biomarcadores en terminos de KO para el ciclo del N

Biomarcadores en terminos KO para el ciclo del Azufre

Conclusiones


• En el manglar predominó el ciclo del metano y predominaron las bacterias metanotrofas.

• Para el ciclo del N abundó la desnitrificación y la inhibición de la fijación de N.

 En el ciclo del S prevalecieron los procesos de reducción, representados por las Desulfobacterales. El metabolismo del metano fue el único que tuvo un efecto significativo en abundancia entre las tres salinidades. Sin embargo, la salinidad no afectó las categorías funcionales de ningún ciclo, lo que indica la tolerancia de este ecosistema.

Se encontraron 34 genes marcadores, que se vieron representados mayoritariamente en salinidad alta.

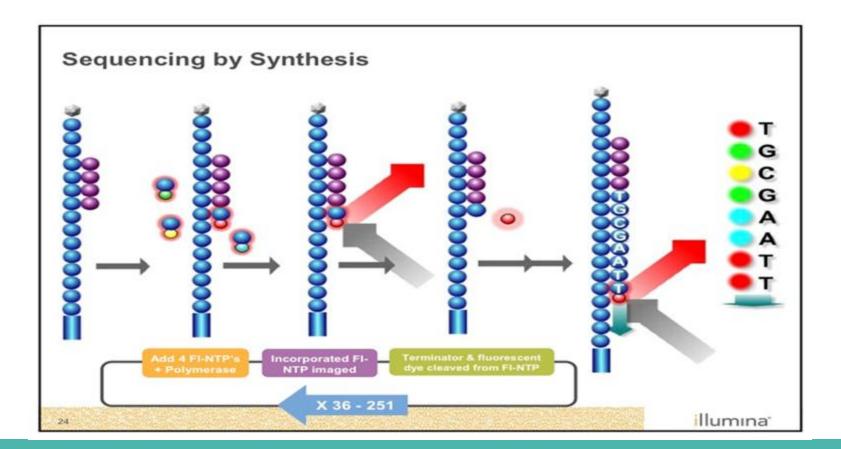
Participaciones

World Journal of Microbiology and Biotechnology

Effect of salinity on the bacterial community and functional potential in a semi-arid mangrove using metagenomics --Manuscript Draft--

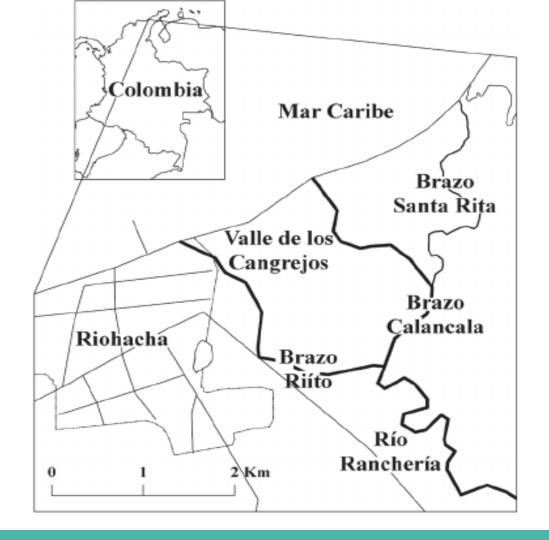
Manuscript Number:					
Full Title:	Effect of salinity on the bacterial community and functional potential in a semi-arid mangrove using metagenomics				
Article Type:	Original Article				
Keywords:	Salinity, Mangrove, Metagenome, Biogeochemical cycles.				
Corresponding Author:	Javier Vanegas Universidad Antonio Narino Bogotá, COLOMBIA				
Corresponding Author Secondary Information:					
Corresponding Author's Institution:	Universidad Antonio Narino				
Corresponding Author's Secondary Institution:					
First Author:	Javier Vanegas				
First Author Secondary Information:					
Order of Authors:	Javier Vanegas				
	Juan Pablo Isaza, Ph.D.				
	Orson Mestanza				
	Angie Vanessa Sandoval-Figueredo				
	Maria Camila Rodelo				
	Ingrid Figueroa-Galvis				
	Luis Fernando Niño				
	Jaime Polanía				

Agradecimientos



Financiamiento "Diversidad funcional de microorganismos asociados al ciclaje de C, N y P en el manglar la Ranchería (La Guajira) mediante un acercamiento de metatranscriptómica" Cod. 1233-659-44129 CT.529/14.

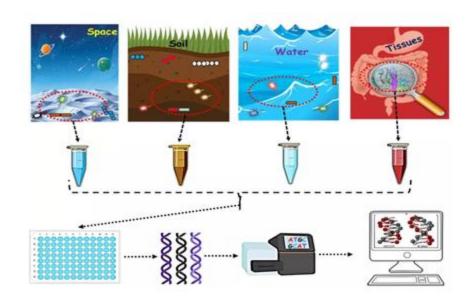
Illumina Hiseq



Rhizophora mangle

Laguncularia racemosa

Avicennia germinans


Conocarpus erectus

Metagenómica

Ventajas

- Independencia de cultivo
- Mayor precisión y menor tiempo
- Menor sesgo taxonómico

Análisis simultáneo

Ministerio del Medio Ambiente

Colombia actualmente el número de hectáreas del ecosistema manglar en colombia es

285.049

