

EVALUACIÓN DE RIZOBACTERIAS SOLUBILIZADORAS DE FOSFATO AISLADAS DE BOSQUE ALTO ANDINO PARA USO EN RESTAURACIÓN ECOLÓGICA DEL CORREDOR CHINGAZA-SUMAPAZ

JENSSY DANIELA CATAMA GONZALEZ DIANA MILENA PEREZ RODRIGUEZ

Ana Graciela Lancheros

Asesora interna

Carolina Jaime Rodríguez Msc

Asesora externa

UNIVERSIDAD COLEGIO MAYOR DE CUNDINAMARCA FACULTAD DE CIENCIAS DE LA SALUD PROGRAMA BACTERIOLOGÍA Y LABORATARIO CLÍNICO INFORME FINAL BOGOTÁ – Mayo 2018

INTRODUCCIÓN

Bosque Alto Andino

Franja de vegetación que va desde los 2.600 a 3.200 msnm con temperaturas promedio de 15 a 6°C

Desde 1800 hasta nuestros días, se ha transformado del 70 a 93%

Escallonia paniculata

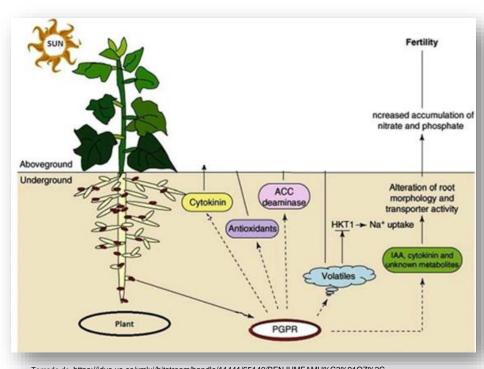
- Tobo o tibar
- Es un árbol que alcanza los 9 m de altura
- Habitantes típicos de los bosques andinos húmedos

Tomada de: http://www.ciencias.unal.edu.co/unciencias/data-file/user_46/file/Guia Metodologica.pdf.

Escallonia paniculata, Catama y Perez, 2018

Vallea stipularis, Catama Perez, 2018

En Colombia, afectados por la presión colonizadora y con más altas tasas de deforestación.


Vallea stipularis

- Campano, chaque, gaque, raque
- Árboles nativos zoócoros de hasta 10 m de alto.
- Propia de bosques altoandinos.

Rizobacterias solubilizadoras de fosforo

Ciclo del fosforo

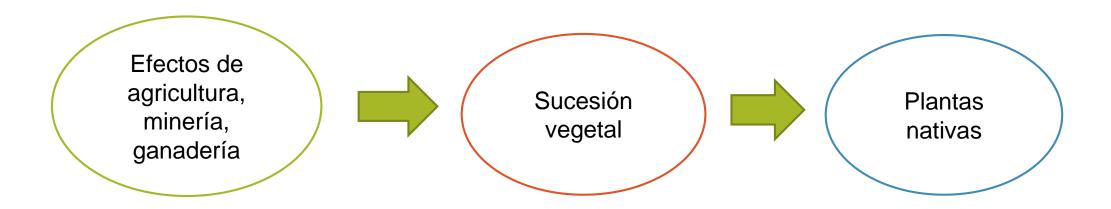
Aumento de la nutrición

Factores de crecimiento

AIA influencia en la raíz Dormancia y germinación

Disolución, mineralización y desorción Disponibilidad de fósforo

PGRPs



Bacillus sp, Stenotrophomonas sp, Burkholderia sp, Pseudomonas sp, Rhizobium sp, Vibrio proteolyticus, Enterobacter aerogenes y Pantoea sp

Pregunta de investigación

¿Algunas rizobacterias solubilizadoras de fosfato aisladas del suelo de usme coadyudan al establecimiento y crecimiento de especies nativas ?

OBJETIVOS

General

Evaluar rizobacterias solubilizadoras de fosfato aisladas de suelo del Bosque Alto Andino con capacidad PGPR a escala de vivero para posible uso en restauración ecológica.

Caracterizar fenotípica y enzimáticamente

Aislar especies nativas

RBSF

Específicos

Identificar mediante pruebas bioquímicas Demostrar la actividad PGPR en plantas de Escallonia paniculata y Vallea stipularis

Vivero

ANTECEDENTES

1978

1980

1988

1993

2013

2014

odríguez

Kloeppler y Schroth

Término de rizobacterias promotoras del crecimiento vegetal (PGPR)

Rodríguez , Fraga

Fósforo, nutriente inorgánico más requerido

John Davison

Bacterias
asociadas a la
rizosfera de las
plantas son
capaces de
promover el
crecimiento
vegetal

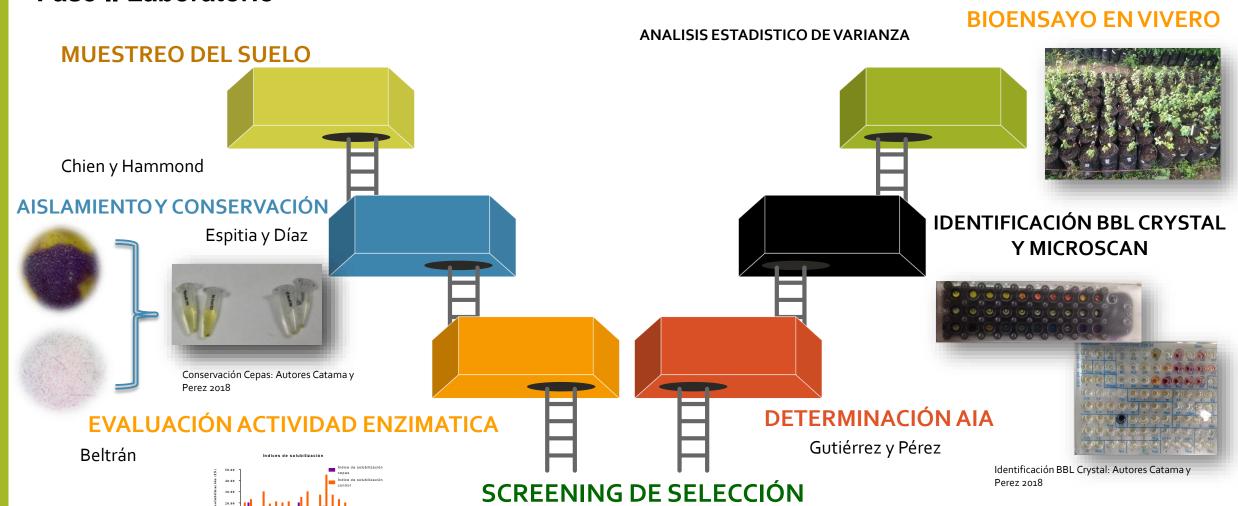
Harper

Restauración.
Ciencia
emergente con
una profunda
importancia en
conservación
biológica

Min Ambiente

El Plan Nacional de Restauración Ecológica, rehabilitación

Violeta et al


Caracterización de rizobacterias promotoras de crecimiento en plántulas de Eucalyptus nitens

METODOLOGIA

Fase I. Laboratorio

Fase II. Vivero

Fase I: Laboratorio

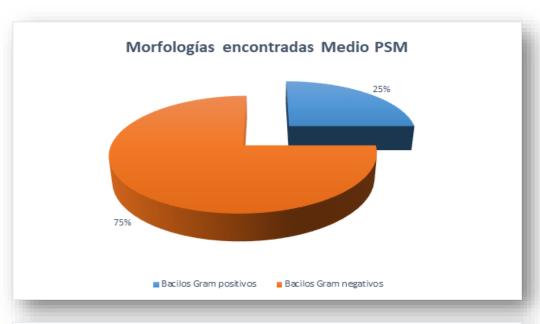
Aislamiento y caracterización de rizobacterias solubilizadoras de fosfato

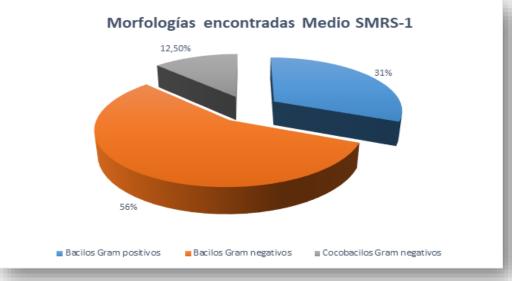
Muestreo #1					
Medio Dilución UFC					
PSM	10 ⁻⁴	6			
SMRS-1 10 ⁻⁴		7			
ТОТА	L	13			

Muestreo #2						
Medio	Dilución	UFC				
PSM	10 ⁻³	7				
	10 ⁻⁴	8				
SMRS-1	10 ⁻⁴	11				
Pikovskaya	5					
T	OTAL	31				

Numero de cepas aisladas según medios y diluciones Autores Catama y Pérez, 2018

Inoculo biotecnológico Azospirillum brasilense Azobacter chroococcum

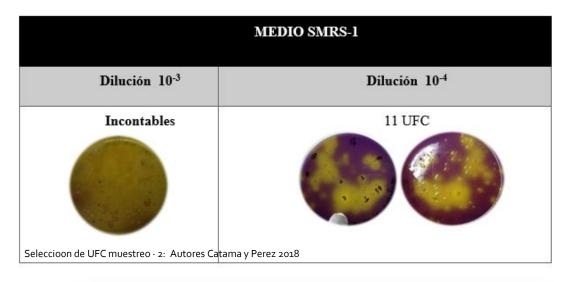

Ubicación astronómica del Bosque Alto Andino, Sede Usme UAN. Google Inc. (2018). Google Earth (Versión 4.482833) [Software]. Disponible desde https://www.google.com.co/maps/place/Colegio+Universidad+Antonio+Nari%C3%B10+ Usme/@4.482833

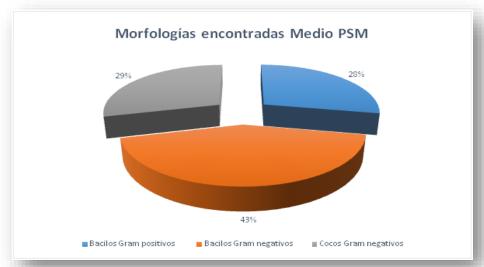


Muestreo 1

MEDIO SMRS-1	
Dilución 10-4	Descripción macroscópica
0	-Colonias naranja; grande, opacas, bordes regulares. -Colonias grisáceas oscuras; medianas, brillantes, bordes regulares. -Colonias roja; pequeña, borde regular, opaca

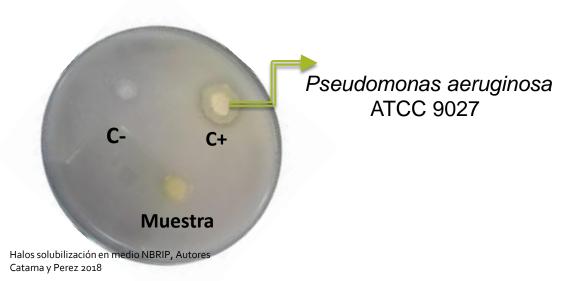
Seleccioon de UFC: Autores Catama y Perez 2018



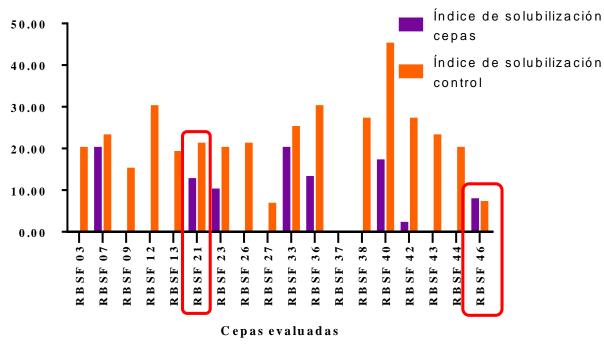


Muestreo 2

Resultados y Discusión



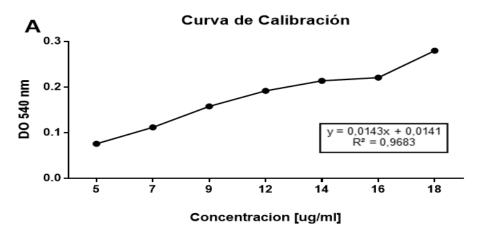
CEPAS	AIA CONCENTRACION (μg/ml)	IS (%)
CONTROL +	18	45
RBSF03	6,45	0
RBSF07	8,91	20
RBSF09	7,43	0
RBSF12	6,55	0
RBSF13	8,69	0
RBSF21	16,78	12,5
RBSF23	18	10
RBSF26	1	-
RBSF27	11,3	-
RBSF33	6,68	20
RBSF36	18	13
RBSF37	18	0
RBSF38	4	0
RBSF40	18	17
RBSF42	16,81	2
RBSF43	5,79	0
RBSF44	5,82	0
RBSF46	16,45	0

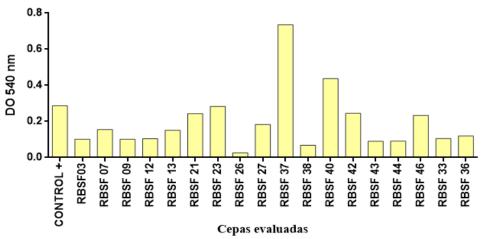

Índice de

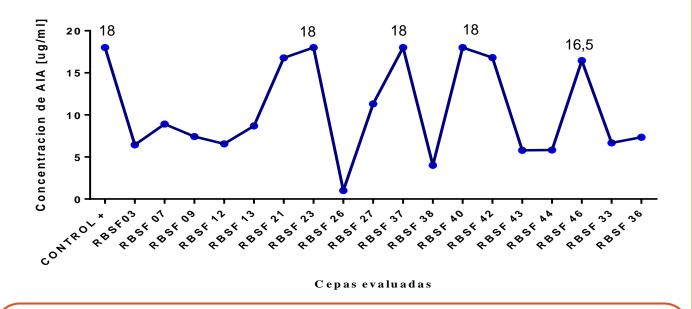
Evaluación de la actividad solubilizadora de fosfato

		Muestr	a	Control		
Código de aislamiento	Diámetro de la colonia (mm)	Diámetro del halo de solubilización (mm)	Índice de solubilización %	Diámetro de la colonia (mm)	Diámetro del halo de solubilización (mm)	Índice de solubilización %
RBSF 21	8mm	1 mm	12.5 %	14 mm	3 mm	21.%
RBSF 23	10 mm	1 mm	10%	15 mm	3 mm	20%
RBSF 36	16 mm	2 mm	13 %	13 mm	4 mm	30%
RBSF 40	6 mm	1 mm	17%	11 mm	5 mm	45%
RBSF 46	13 mm	1 mm	7.7%	15 mm	1 mm	7%

Indices de solubilización


Rangos de solubilización medidos a las 24h (0-10%) y a las 48h (0-11%)


Corrales, Sánchez et al, 2014


el medio de cultivo NBRIP Rodríguez, Hernández. 2009

Ensayo de AIA (Ácido Indol Acético)

Se ha descrito que la concentración de AIA, puede estar controlada por la planta o por rizobacterias.

El AIA está involucrado en el crecimiento y desarrollo de las plantas, división celular, diferenciación de tejido y respuesta de defensa Angulo, Sanfuentes, Rodríguez y Sossa. 2014

Las cepas ensayadas produjeron AIA en un amplio rango, desde los 0,5µg/ml hasta 54µg/ml

Gutiérrez y Pérez. 2017

Enterobacter sp. y Serratia sp. son microorganismos capaces de solubilizar fosfato a partir de diferentes fuentes orgánicas

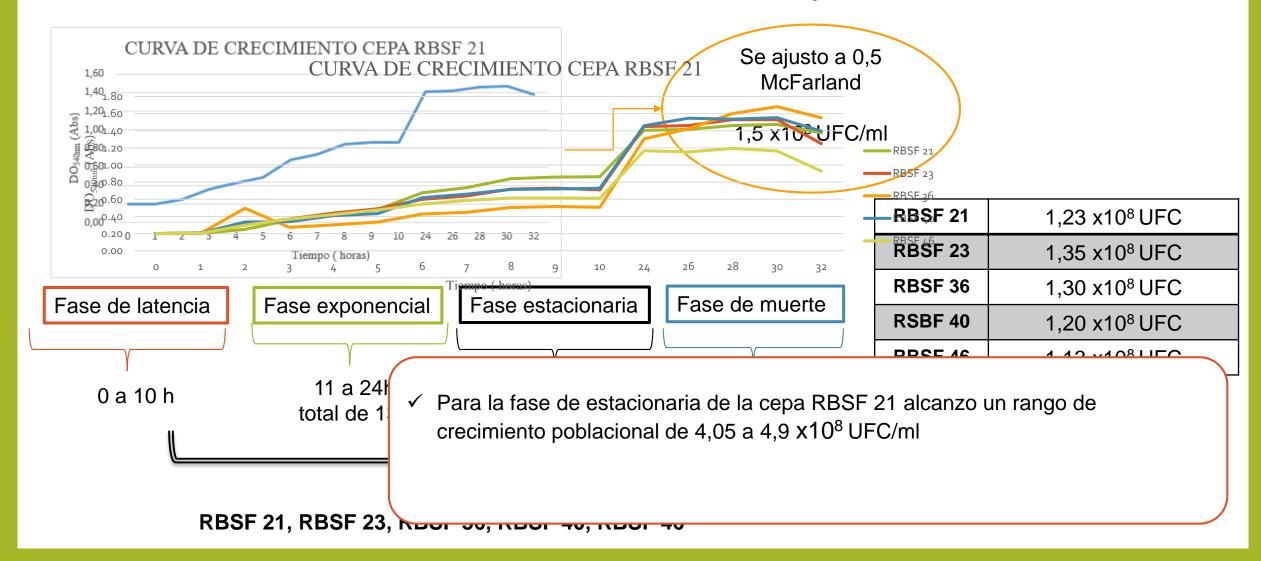
Nieto y Szpinak. 2017

Identificación de bacterias de solubilizadoras de fosfato por el sistema de identificación BD

BBLCRYSTAL™ para microorganismos entéricos no fermentadores

Enterobacter cloacae

Beltrán, 2014


Pantoea sp. posee múltiples atributos en el desarrollo vegetal, como actividad solubilizadora de fosfato, siderófora y producción de ácido acético Walterson y Stavrinides. 2017

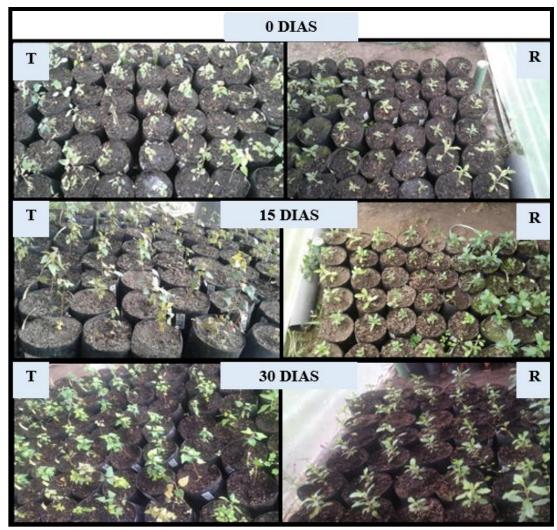
Fase II: Vivero

Evaluación de tratamientos inoculados a escala de vivero, inóculos y curva de crecimiento

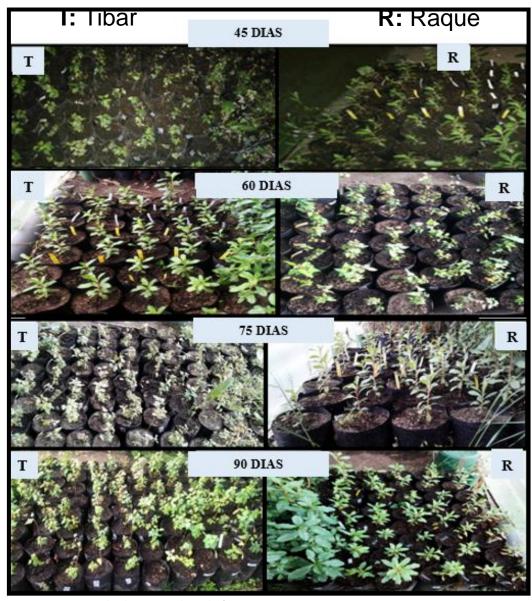
Fase II: Vivero

Evaluación de tratamientos inoculados a escala de vivero, inóculos y curva de crecimiento

CURVA DE CRECIMIENTO COMPARACION

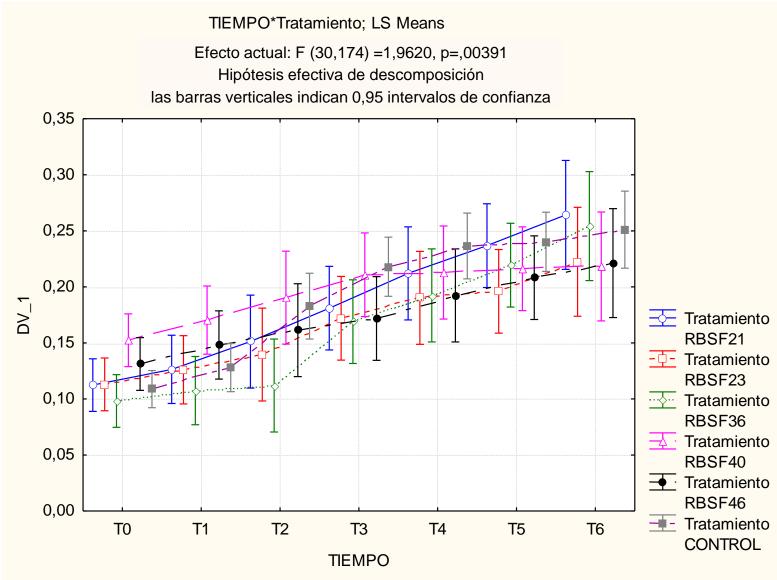

✓ Para la fase de estacionaria de la cepa RBSF 21 alcanzo un rango de crecimiento poblacional de 4,05 a 4,9 x10⁸ UFC/ml

RBSF 21, RBSF 23, RBSF 36, RBSF 40, RBSF 46



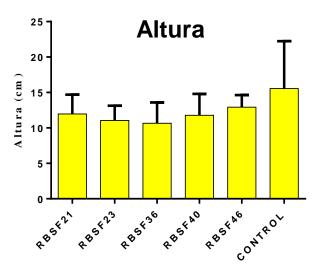
T: Tibar (Escallonia paniculata)

R: Raque (*Vallea* stipularis)

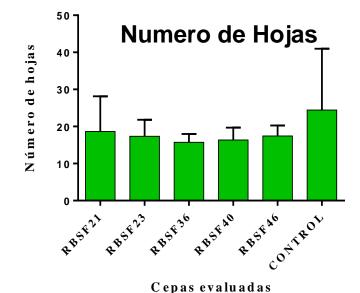

Crecimiento vegetal en los tiempos de medición 1: Autores Catama y Perez 2018

Crecimiento vegetal en los tiempos de medición 2: Autores Catama y Perez 2018

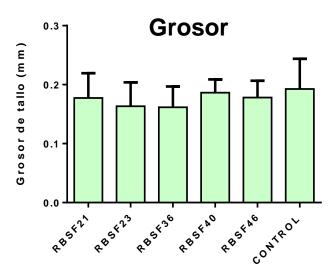
Análisis de datos estadísticos de varianza(ANOVA)



Tibar (Escallonia paniculata)


Análisis de datos estadísticos de varianza

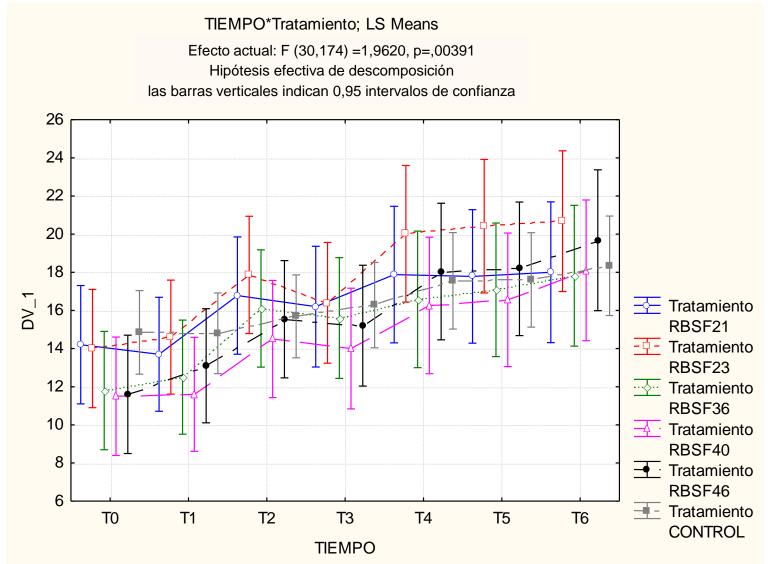
Tibar (Escallonia paniculata)



Cepas evaluadas

		lisis de var pótesis efe			
Efecto	SS	GRADO DE LIBERTAD	MS	F	р
Intercepta	34883,61	1	34883,61	326,9192	0,000000
Tratamiento	843,22	5	168,64	1,5805	0,196843
Error	3094,42	29	106,70		
TIEMPO	3932,87	6	655,48	66,9672	0,000000
TIEMPO*Tratamiento	360,19	30	12,01	1,2266	0,208520
Error	1703,12	174	9,79		

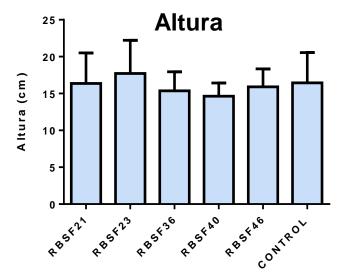
Análisis de varianza de medidas repetidas Hipótesis efectiva de descomposición SS GRADO DE MS p LIBERTAD Efecto Intercepta 76960.01 76960,01 172,4365 0,000000 2877,11 575,42 1,2893 0,295531 Tratamiento Error 12942,97 446,31 TIEMPO 13,9201 0,000000 8225,36 1370,89 TIEMPO*Tratamiento 1739,32 57.98 0,5887 0,956147 174 Error 17136,03 98,48



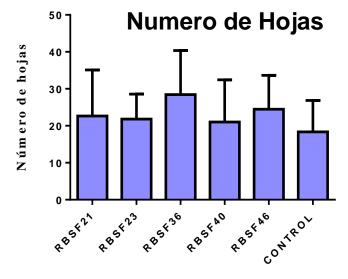
Cepas evaluadas

	Análisis de varianza de medidas repetidas Hipótesis efectiva de descomposición						
Efecto	SS		MS	F	р		
Intercepta	7,435708	1	7,435708	1135,067	0,000000		
Tratamiento	0,039769	5	0,007954	1,214	0,327478		
Error	0,189976	29	0,006551				
TIEMPO	0,393947	6	0,065658	71,877	0,000000		
TIEMPO*Tratamiento	0,053767	30	0,001792	1,962	0,003915		
Error	0,158944	174	0,000913				

Análisis de datos estadísticos de varianza(ANOVA)



Raque (Vallea stipularis)


Análisis de datos estadísticos de varianza

Raque (Vallea stipularis)

Cepas evaluadas

2	Análisis de varianza de medidas repetidas Hipótesis efectiva de descomposición						
Efecto	SS	GRADO DE LIBERTAD	MS	F	р		
Intercepta	59166,82	1	59166,82	755,0594	0.000000		
Tratamiento	196,27	5	39,25	0,5009	0,772973		
Error	2272,45	29	78,36				
TIEMPO	995,08	6	165,85	74,3685	0,000000		
TIEMPO*Tratamiento	103,08	30	3,44	1,5407	0,045956		
Error	388,03	174	2,23				

Cepas evaluadas

	Análisis de varianza de medidas repetidas Hipótesis efectiva de descomposición					
Efecto	SS	GRADO DE LIBERTAD	MS	F	р	
Intercepta	119090,6	1	119090,6	215,6754	0,000000	
Tratamiento	2639,9	5	528,0	0,9562	0,460456	
Error	16013,1	29	552,2			
TIEMPO	18443,4	6	3073,9	57,9069	0,000000	
TIEMPO*Tratamiento	2113,9	30	70,5	1,3274	0,133678	
Error	9236,5	174	53,1			

	0.20			Gr	oso	r		
Grosor de tallo (mm)	0.15 -			Ť	Ť	Ţ	Ŧ	
	e\$¢	£ ² ^ ₽₽	A B	436 436	SFAO RE	bSFAG CON	TROV	L

Análisis de varianza de medidas repetidas Hipótesis efectiva de descomposición GRADO DE P Efecto LIBERTAD 3,173278 2120,222 0,000000 3,173278 ntercepta 5 0,000880 0,588 0,709014 0,004401 Tratamiento Error 0.043404 29 0.001497 TIEMPO 0.005363 6 0.000894 11,132 0,000000 TIEMPO*Tratamiento 0.001942 30 0.000065 0,806 0,752398 174 0.000080 0.013970 Error

Cepas evaluadas

CONCLUSIONES

La recuperación de RBSF

Suelos áridos, La variedad morfológica Las 18 cepas trabajadas 5 erosionados y/o predominante presentaron producción de AIA afectados fenotípicamente entre 16 a 18µg/ml Suelo en Bosques Altos andinos Enterobacter cloacae Bacilos Gram negativos Rizobacterias □ Enterobacter Escallonia paniculata cloacae Vallea stipularis Concentraciones Pantoea AIA $(18\mu g/ml)$ agglomerans IS >17%, Restauración ecológica

RECOMENDACIONES

- Reactivar previamente las cepas a las 24h antes de su valoración para evaluación productora de enzimas PGPR
- Realizar pruebas de antagonismo y simbiosis "in vitro" entre los microorganismos aislados para poder realizar posteriormente inóculos compuestos que puedan ser evaluados "in vivo" en las plantas Raque (Vallea stipularis) y Tibar (Escallonia paniculata)
- Identificar mediante técnicas moleculares las rizobacterias evaluadas.
- > Analizar las variables de crecimiento de las plantas "in vivo" en el vivero por un periodo de tiempo más amplio, teniendo en cuenta el ciclo de crecimiento de los árboles frente a rizobacterias PGPR

AGRADECIMIENTOS

- A nuestras asesoras Carolina Jaime, Graciela Lancheros y a nuestro asesor estadístico Camilo de los Ángeles por habernos guiado en este proceso, gracias por su tiempo y sus aportes a la realización de este trabajo de grado
- A la Universidad Colegio Mayor de Cundinamarca porque a través de sus profesores nos dio las bases necesarias para hacer un buen trabajo
- A la Universidad Antonio Nariño, al Laboratorio de microbiología y nanotecnología de la sede tecnoparque SENA, por su tiempo y ayuda.

REFERENCIAS

- 1. Velasco-Linares P, Vargas O. Problemática de los Bosques Altoandinos. Estrategias para la Restauración Ecológica del Bosque Altoandino [Internet]. 2008[citado el 16 de junio de 2016]; (Cavelier 1997):41–56. Disponible en: http://www.ciencias.unal.edu.co/unciencias/data-file/user_46/file/Guia Metodologica.pdf.
- 2. Benjumeda Muñoz. Bacterias promotoras del crecimiento vegetal: Mecanismos y aplicaciones [Internet]. Universidad de Sevilla; 2017. Disponible en: https://idus.us.es/xmlui/bitstream/handle/11441/65140/BENJUMEAMU%C3%91OZ%2C DANIEL.pdf?sequence=1&isAllowed=y
- 3. Barea J, Navarro E, Montaya E. Production of Plant Growth Regulators by Rhizosphere Phosphate solubilizing Bacteria. J Appl Bacteriol [Internet]. 1976 [citado el 3 de junio de 2016]; 40(2):129–34. Disponible en: http://onlinelibrary.wiley.com.scihub.cc/doi/10.1111/j.1365-2672.1976.tb04161.x/pdf
- 4. Davison J. Plant Beneficial Bacteria. Nat Biotechnol [Internet]. 1988[citado el 5 de junio de 2016]; 6:709–12. Disponible en http://www.nature.com.scihub.cc/nbt/journal/v6/n3/full/nbt0388-282.html
- 5. García, P. Bacterias diazotroficas y solubilizadoras de fósforo aisladas de las especies forestales altoandinas colombianas. Rev del Inst Investig Trop. 2010;5(13):6376.
- 6. Osorno L. Evaluación de factores que afectan la bioacidulación de roca fosfórica bajo condiciones in vitro. Rev Colomb Biotecnol [Internet]. 2017;XIX(1):53— 62. Disponible en: https://revistas.unal.edu.co/index.php/biotecnologia/article/view/65968/pdf
- 7. Ángulo V, Sanfuentes E, Rodríguez F, Sossa Ke. Rev argentina Caracterización de rizobacterias promotoras de crecimiento. 2014;46(4):338–47
- 8. Rodríguez C, Hernández M. Aislamiento y Selección De Rizobacterias Promotoras De Crecimiento Vegetal En Cultivos De Uchuva (Physalis Peruviana L.) Con Capacidad Antagónica Frente A Fusarium Sp. 2009; 1–61. Gffgff
- 9. Nieto N, Szpinak V. Caracterización preliminar de la actividad microbiana solubilizadora de fosfato del biofertilizante Tierra Nueva [Internet]. Universidad ORT Uruguay. 2017.Disponible en: https://dspace.ort.edu.uy/bitstream/handle/20.500.11968/3380/Material completo.pdf?sequence=-1&isAllowed=y
- 10. Beltrán Pineda ME. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Corpoica Cienc Tecnol Agropecu [internet].2014. [citado el 16 de junio de 2016];15(1):101–13. Disponible en: www.scielo.org.co/pdf/ccta/v15n1/v15n1a09.pdf
- 11. Walterson AM, Stavrinides J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews. 2015;39(6):968–984. Disponible en: https://academic.oup.com/femsre/article/39/6/968/547864
- 12. Liliana S, Huertas P, Marcela M, Morales MB, Su Z, Casta DM, et al. Implementación y evaluación de dos métodos de conservación y generación de la base de datos del banco de cepas y genes del Instituto de Biotecnología de la Universidad Nacional de Colombia (IBUN). 2006; 4:39–49
- 13. Beltrán Pineda ME. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Corpoica Cienc Tecnol Agropecu [internet].2014. [citado el 16 de junio de 2016];15(1):101–13. Disponible en: www.scielo.org.co/pdf/ccta/v15n1/v15n1a09.pdf
- 14. Gutiérrez Á M, Pérez J. Rizobacterias promotoras del crecimiento vegetal Plant growth promoting rhizobacteria [Internet]. Universidad de la Laguna; 2017 [citado el 16 de junio de 2016] Disponible en: https://riull.ull.es/xmlui/bitstream/handle/915/5766/Rizobacterias promotoras del crecimiento vegetal.pdf?sequence=1&isAllowed=y