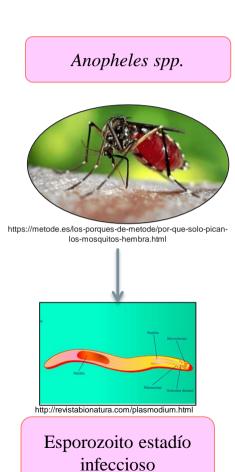
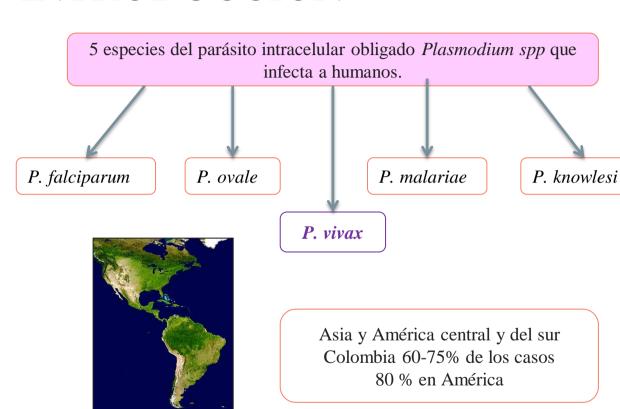


Determinación de la unión a reticulocitos humanos de los fragmentos conservado y variable de la proteína TRAMP de *Plasmodium vivax*

Giselle Aparicio Rodriguez

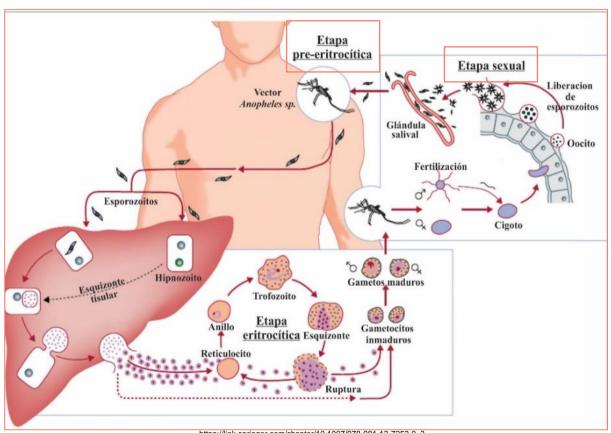
Daniela Catalina Bareño Niño

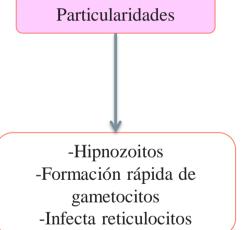




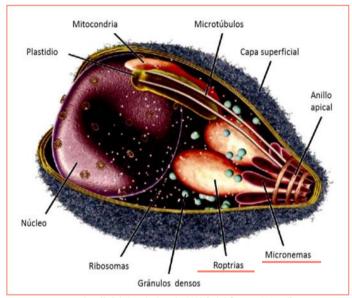
Determinación de la unión a reticulocitos humanos de los fragmentos conservado y variable de la proteína TRAMP de *Plasmodium vivax*

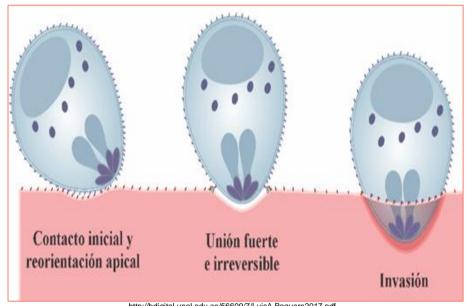
Asesora interna: **EDITH DEL CARMEN HERNÁNDEZ ROJAS MSC**Asesora externa: **LAURA ALEJANDRA RICAURTE CONTRERAS MSC** (**C**)


INTRODUCCIÓN

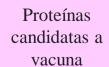


https://es.wikivoyage.org/wiki/Am%C3%A9rica


CICLO DE INVASIÓN

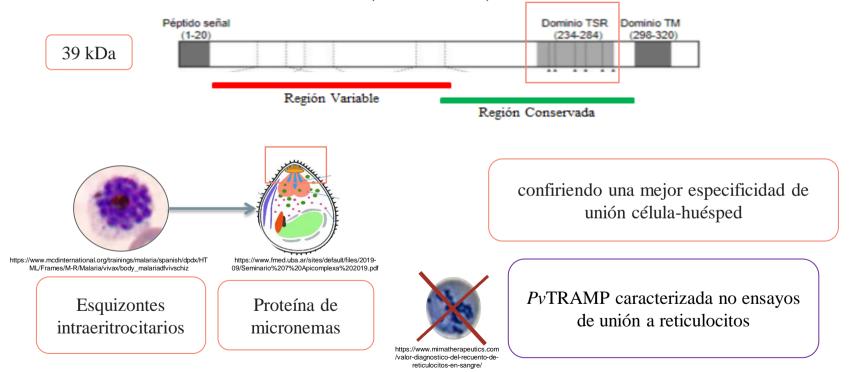


https://link.springer.com/chapter/10.1007/978-981-13-7252-0 3


MECANISMO DE INVASIÓN

http://bdigital.unal.edu.co/56609/7/LuisA.Baquero2017.pdf

http://bdigital.unal.edu.co/56609/7/LuisA.Baquero2017.pdf



CSP, TRAP, MSP-1 AMA-1, GAMMA, **RBSA**

TRAMP

PROTEÍNA APICAL DEL MEROZOÍTO RELACIONADA A LA TROMBOSPONDINA

(TRAMP)

OBJETIVOS

General

Determinar si la proteína TRAMP en sus fracciones conservada y variable de *Plasmodium vivax* presenta capacidad de unión a reticulocitos humanos adultos.

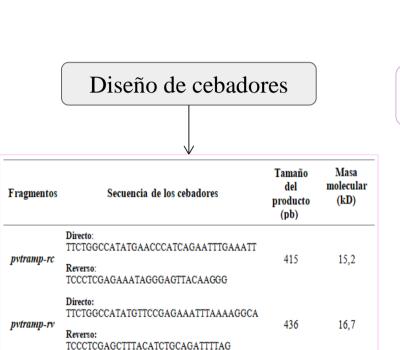
OBJETIVOS

Específicos

1. Obtener clones recombinantes para los fragmentos conservado y variable de la proteína TRAMP de *Plasmodium vivax*

2. Expresar los fragmentos conservado y variable de la proteína TRAMP empleando un sistema procariota.

3. Evaluar la capacidad de unión de los fragmentos conservado y variable de la proteína recombinante TRAMP de *P. vivax* a reticulocitos de humanos adultos.


METODOLOGÍA

Obtención de clones

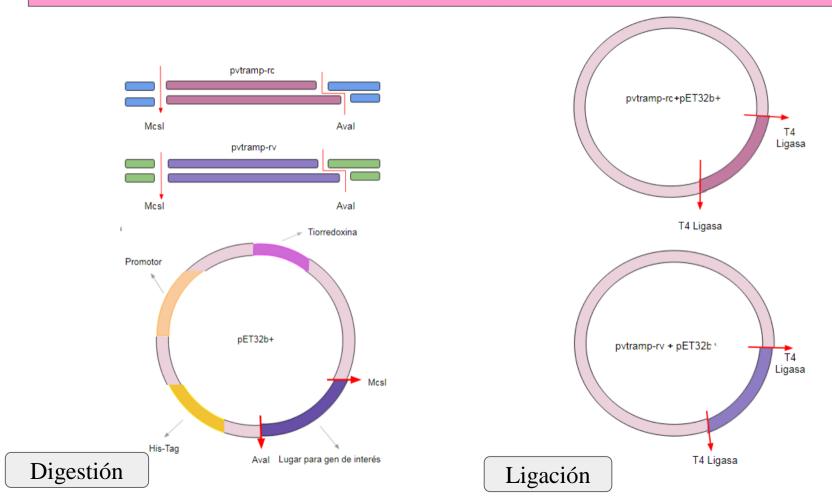
Ensayos de unión

Expresión de proteína

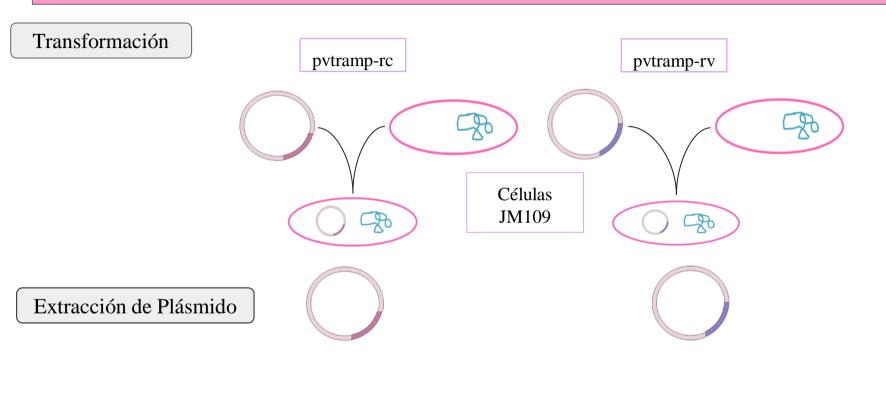
1.Obtener clones recombinantes para los fragmentos conservado y variable de la proteína TRAMP de Plasmodium vivax

Cebadores para la amplificación del gen fragmentado en *pvtramp-rc y pvtramp-rv*.

Muestra						
ADN genómico de PCR Plasmodium vivax						
	Fase	Temperatura	Tiempo	Ciclos		
	Desnaturalización inicial	98°C	3min	1		
	Desnaturalización	98°C	10 s			
	Hibridación	56°C	45sg	35		
	Elongación	72°C	1 min			
	Elongación final	72°C	5min	1		
	Conservación	10°C	10min	1		


Condiciones de amplificación para fragmentos de pvtramp

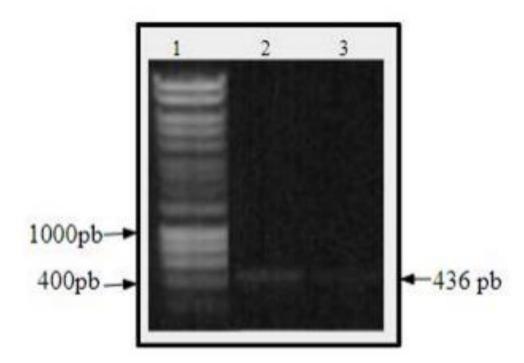
Gel de agarosa Pur


Purificación

Extracción de plásmido

1.Obtener clones recombinantes para los fragmentos conservado y variable de la proteína TRAMP de Plasmodium vivax

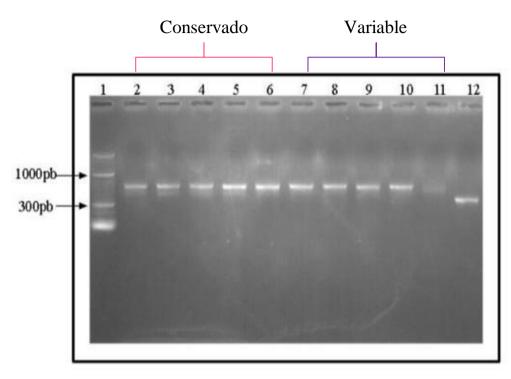
1.Obtener clones recombinantes para los fragmentos conservado y variable de la proteína TRAMP de Plasmodium vivax



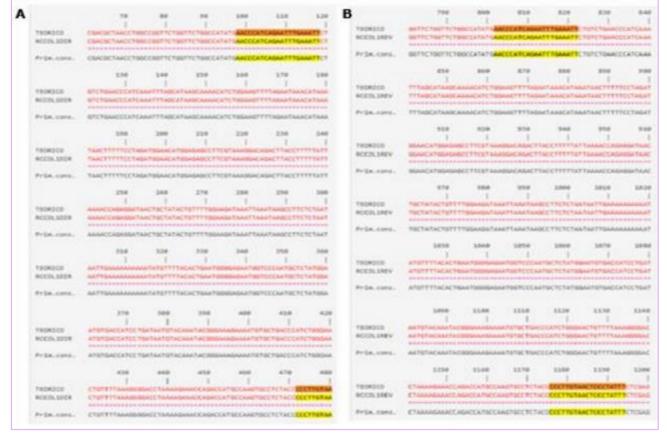
PCR Gel de agarosa

Secuenciación por sanger

web ClustalW NPS@.


Amplificación

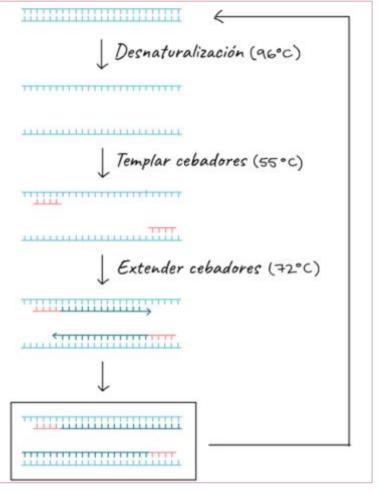
Amplificación de los fragmentos del gen pvtramp.


1: marcador de peso molecular 1Kb, 2: Amplificación de *pvtramp-rc*, 3: Amplificación de *pvtramp-rv*

Clones

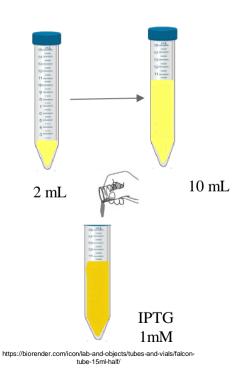
Verificación de obtención de clones. 1: marcador de 1Kb, **2-6:** Plásmido recombinante pvtramp-rc, **7-11:** Plásmido recombinante pvtramp-rv, **12:** pET21b+ .

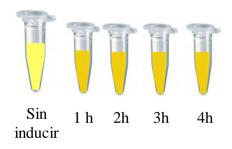
Clustal w



Alineamiento de secuencia teórica frente a secuenciación obtenida de clones positivos A. Secuencia directa de pytramp-rc B. Secuencia reversa de pytramp-rc. Naranja: Localización del respectivo cebador sobre la secuencia teórica Amarillo: Localización del respectivo cebador sobre la secuencia del clon enaviado a Macrogen.

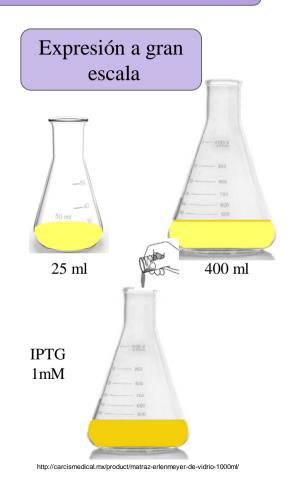
DISCUSIÓN


Mongui y Cols, Bogotá ,2010.

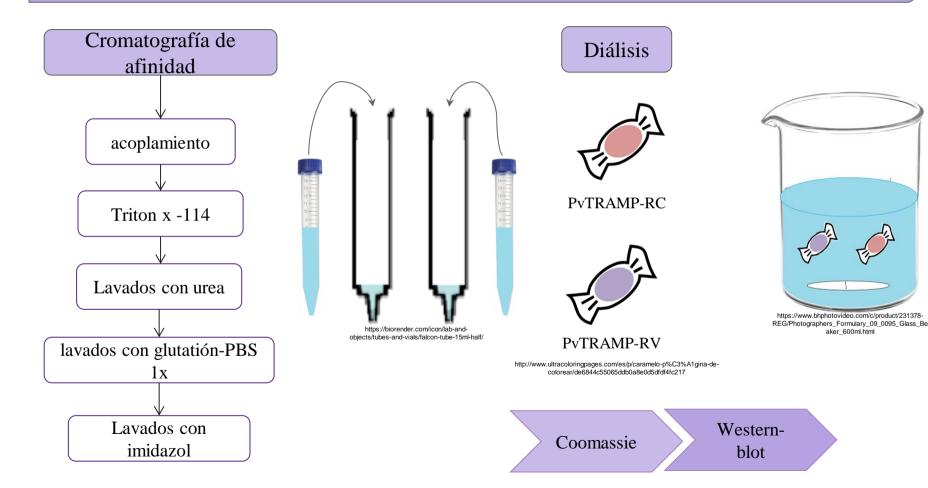

 $\label{lem:https://es.khanacademy.org/science/biology/biotech-dna-technology/dna-sequencing-pcr-electrophoresis/a/polymerase-chain-reaction-pcr$

2. Expresar los fragmentos conservado y variable de la proteína TRAMP empleando un sistema procariota

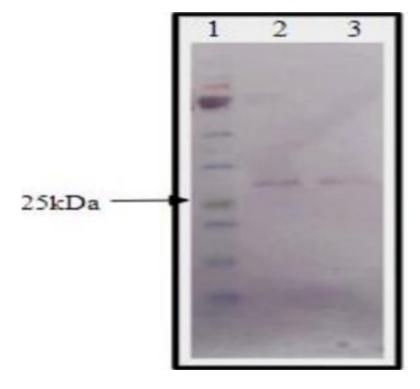
Expresión piloto



Expresión por horas

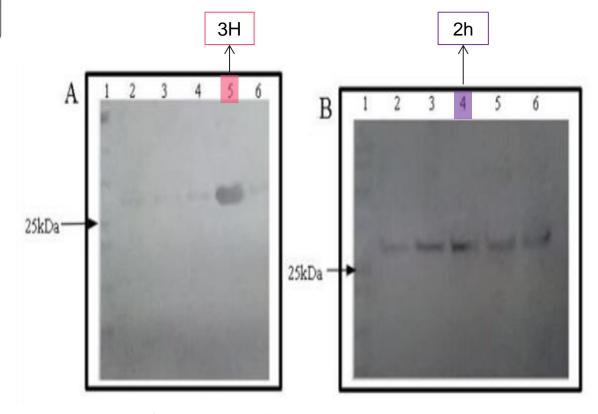

https://www.fishersci.es/shop/products/eppendorf-tube-5ml-9/p-4669177

Lisis Western-blot

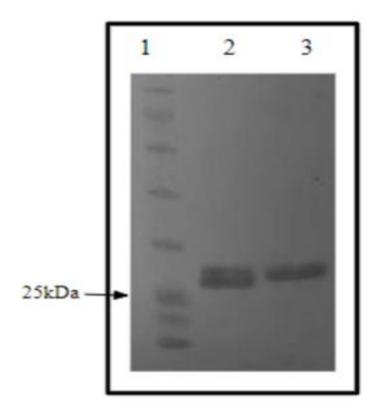


2. Expresar los fragmentos conservado y variable de la proteína TRAMP empleando un sistema procariota

aker 600ml.html

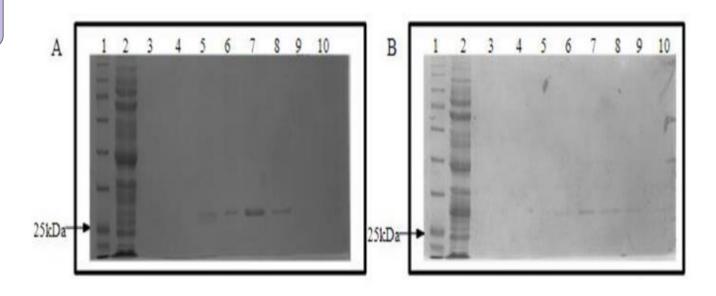


Expresión piloto

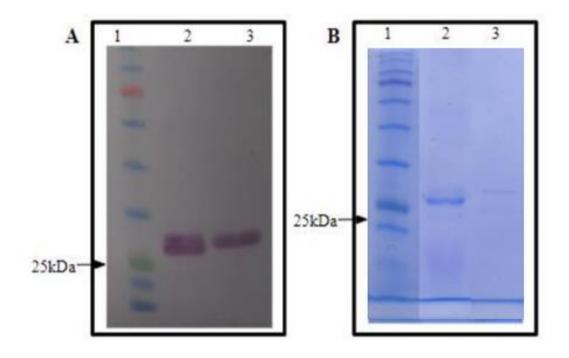

Expresión piloto verificada en Western-blot. l 1: Marcador de peso molecular de 11-245kDa. **2:** *Pv*TRAM-RC. **3:** *Pv*TRAMP-RV

Expresión por horas

Expresión por horas verificada en Western-blot .A. *Pv*TRAM-RC. B. *Pv*TRAMP-RV. 1: Marcador de peso molecular de 11-245kDa. l 2: Expresión basal. 3: Una hora. 4: Dos horas. 5: Tres horas. 6: Cuatro horas


Expresión a gran escala

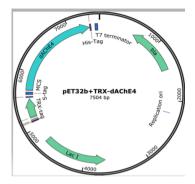
Obtención de cada fragmento mediante expresión a gran escala.


1: Marcador molecular de 11-245kDa. 2: PvTRAMP-RC (3 horas). 3: PvTRAMP-RV (2 horas).

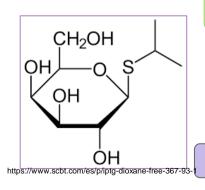
Cromatografía de afinidad

Fragmentos purificados de PvTRAMP verificados en gel de poliacrilamida teñido con azul de Coomassie A. *Pv*TRAMP-RC B. *Pv*TRAMP-RV, 1. Marcador de 11-245kDa, 2. Fracción no retenida de la purificación. 3: 25mM 4: 50 mM 5: 75mM 6: 100mM 7: 150mM 18: 200mM 9: 250mM 10: 500mM

Diálisis



Diálisis de la proteína TRAMP. A. Western-blot **B.** Tinción de azul de Coomassie. **1.** Marcador de peso molecular 11-245kDa, **2.** *Pv*TRAMP-RC, **3.** *Pv*TRAMP-RV


DISCUSIÓN

pET32B+

https://www.addgene.org/83917/

McNiff y Cols. Kansas. 2016

IPTG

Tiorredoxina

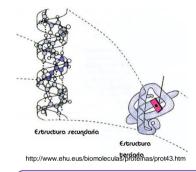
Promotor T7

Resistencia a ampicilina

Temperatura

afecta la transcripción y traducción de proteínas

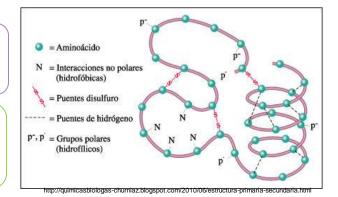
> 37 °C favorece formación de cuerpos de inclusión < 37 ° C Mejor plegamiento de proteínas


Farewell y Cols. Míchigan. 1998

DISCUSIÓN

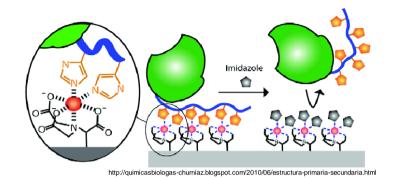
Urea 6M

Debilita las interacciones moleculares

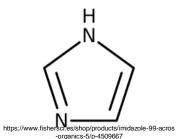


Glutation oxido-reducido

Replegar proteinas


Enlaces disulfuro

Tran Moseman y Cols. Massachusetts 1999



Resina de níquel

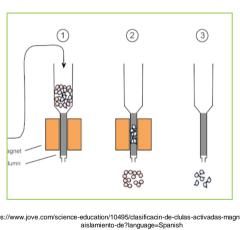
Rendimiento mayor

Imidazol

Altas concentraciones:

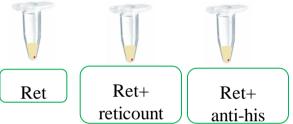
Obtención de la proteína etiquetada con histidinas de manera íntegra

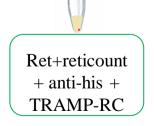
3. Evaluar la capacidad de unión de los fragmentos conservado y variable de la proteína recombinante TRAMP de P. vivax a reticulocitos de adultos humanos



https://www.freepik.es/fotos-premium/tubos-recogida-sangrevacutainer-tubo-sangre-edta-prueba-cbc-laboratorio 2139398.htm

CF11

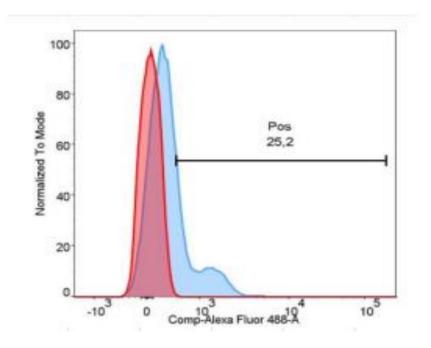

Perlas magnéticas

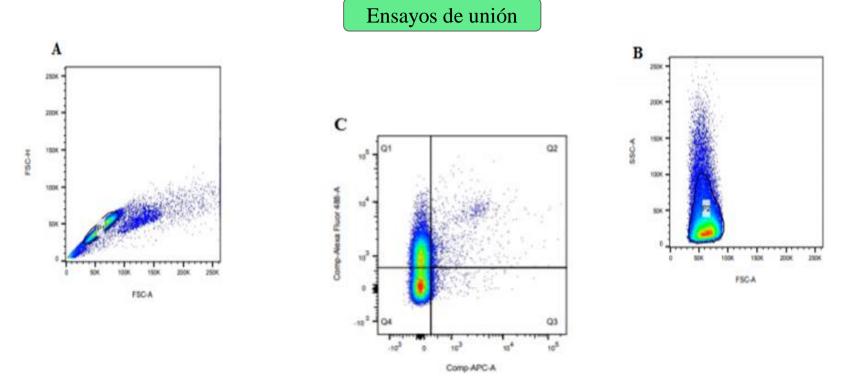


https://www.jove.com/science-education/10495/clasificacin-de-clulas-activadas-magnticas-macs-

Citometría de flujo

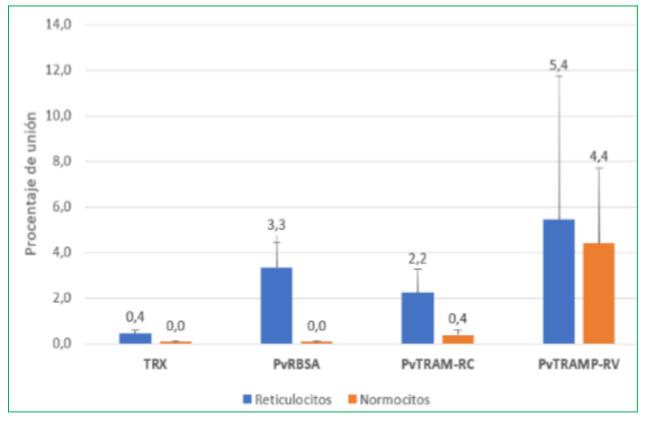
Ensayos de unión




Ret+reticount + anti-his + TRAMP-RV

https://www.fishersci.es/shop/products/eppendorf-tube-5ml-9/p-4669177

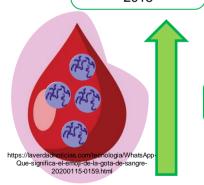
Enriquecimiento



Enriquecimiento de reticulocitos humanos . Rojo: reticulocitos no marcados. Azul: reticulocitos marcados. Pos: positivos para reticulocitos sobre el total de las células

Selección de la población objeto de estudio A. Eliminación de dupletas. B. Discriminación por complejidad y tamaño, C. Q1. Células positivas para reticulocitos. Q3. Células positivas para la proteína. Q2. Reticulocitos unidos a la proteína

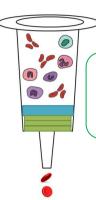
Ensayos de unión


Esquema del porcentaje de unión de los fragmentos de TRAMP y de controles.TRX:
Tiorredoxina control negativo. RBSA: Control positivo Azul: Reticulocitos. Naranja: Glóbulos rojos maduros.

DISCUSIÓN

Obtención de Reticulocitos

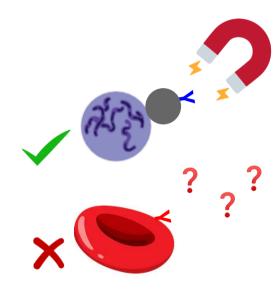
Sangre periférica 2% sangre de cordón umbilical 7-8 %


Camargo y Cols. Bogota 2018

20%

EFECTIVO

Técnica CF11

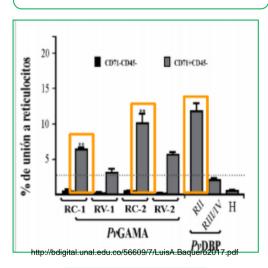


Rápida Económica Efectiva

-interacción entre grupos hidroxilo de celulosa y moléculas de superficie de leucocitos

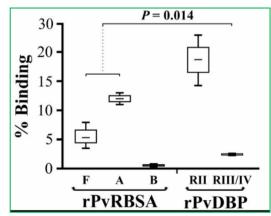
Sriprawat y Cols.
Singapur
2009

Perlas magnéticas CD71


https://es.vexels.com/png-svg/vista-previa/145077/ilustracion-de-globulos-rojos

DISCUSIÓN

Regiones conservadas


estructura y función de las proteínas

Proteína PvGAMA

Baquero y Cols. Bogotá 2017

Proteína PvRBSA

http://bdigital.unal.edu.co/70315/1/Tesis%20RBSA%20Final.pdf

Camargo y Cols. Bogotá 2018

CONCLUSIONES

- Las células JM109 en conjunto con el vector pET32B+ son compatibles en la producción de clones a partir del ADN extraído, en relativamente poco tiempo.
- El tiempo de expresión máxima difiere entre las dos regiones obteniendo una hora clave(3 horas) para la región conservada, mientras que la región variable no exhibe cambios en la expresión durante las 4 horas.
- Tras el enriquecimiento se pudo obtener 25.2% de reticulocitos de sangre humana adulta teniendo en cuenta que en sangre periférica solo hay 1 2%.

CONCLUSIONES

- El fragmento recombinante de la región conservada de la proteína *Pv*TRAMP demostró un porcentaje de unión a reticulocitos de forma constante, indicando su uso como un posible blanco de acción para el diseño de métodos de control contra malaria causada por *Plasmodium vivax*.
- El fragmento recombinante de la región variable demostró un porcentaje de unión a reticulocitos no constante sugiriendo que esta región de la proteína no podría ser utilizada dentro de los candidatos a vacuna pero seria de gran utilidad en estudios de polimorfismo.
- Es la primera vez que se demuestra unión de la proteína TRAMP de *Plasmodium vivax* a células humanas específicamente reticulocitos como células blanco.

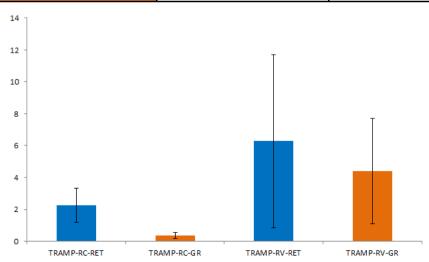
RECOMENDACIONES

- Para posteriores estudios es importante evaluar la obtención de la proteína recombinante de PvTRAMP en un sistema eucariota para comprender si esta tiene modificaciones postraduccionales y si al compararla con la proteína obtenida en el sistema procariota también puede unirse a reticulocitos humanos.
- Determinar la viabilidad celular por citometria de flujo en posteriores estudios.
- Realizar curva de saturación para determinar la especificidad de unión de los fragmentos recombinantes a células tipo reticulocitos.

AGRADECIMIENTOS

- Un agradecimiento enorme a Dios, que hizo de nosotras lo necesario para llevar a cabo este proyecto
- A nuestra familia, amigos y parejas que estuvieron presentes hasta el final.
- Un agradecimiento especial a los miembros del grupo funcional de Biología Molecular de la Fundación Instituto de inmunología de Colombia pues fueron quienes hicieron posible que se llevara a cabo esta investigación.
- A Laura Ricaurte Contreras una persona muy inteligente y maravillosa quien guio nuestro trabajo por provechosos dos años y fue parte absolutamente fundamental de nuestro proceso.
- Al investigador Darwin Andrés Moreno quien aporto toneladas de conocimiento bajo una pedagogía excelente.
- Por último a la profesora Edith del Carmen Hernández que encamino la mejor presentación y contenido que pudo tener este trabajo.

iMUCHAS GRACIAS!!


#sinCiencia no hay futuro

T7 promoter	lac operator	Xba I		rbs	
TAATACGACTCACTATAGGGGA	ATTGTGAGCGGATAACAATTI	CCCTCTAGAAAT	AATTTTGTTTAACTTT	AAGAAGGAGA	
Trx+Tag		Msc I	His-Tag		٦
TATACATATGAGC315bp. MetSer 105aa.		GCCATATGCACC		TTCTGGTCTGGTGCCACGCGGTTCT rSerGly <u>LeuValProArgGlySe</u> r	
5*18	ag <u>Nsp v</u>	3. lag p	g/II Kpn I	thrombin *	1
GGTATGAAAGAAACCGCTGCTG GlyMetLysGluThrAlaAlaA					1
pET-32a(+)		Eag I	Aval		_
Nco I EcoR V BamH I I		nd III Not I	Xho I His-1		
				ACCACCACTGAGATCCGGCTGCTAA oProProLeuArgSerGTyCysEnd	
GCCATGGCGATATCGGATCCGA AlaMetAlalleSerAspProAs				CCACCACTGAGATCCGGCTGCTAA shishisEnd	pET-32b(+)
				CACCACCACTBAGATCCGGCTGCTAA rThrThrThrGlulleArgLeuLeuT	
	Bpu110	21	T7 to	erminator	
CAAAGCCCGAAAGGAAGCTGAG LysProGluArgLysLeuSe	TTGGCTGCTGCCACCGCTGAG	CAATAACTAGCA	TAACCCCTTGGGGCCT	CTAAACGGGTCTTGAGGGGTTTTTTG	1
	T7 ter	minator primer #	89337-3		
			ression region	1	

FRAGMENTOS	230nm	280nm	260nm	260/230	260/280	[] 260
pvtramp-rc	0,0633	0,0420	0,0752	1,18	1,79	75,2 µg/ml
pvtramp-rv	0,0445	0,0335	0,0596	1,33	1,77	59,6 µg/ml

CONCENTRACION 2,5 µM		PORCENTAJE D		
TRAMP-RC	RETICULOCITOS	1.69	1.63	3.4
	NORMOCITOS	0.3	0.6	0.2
TRAMP-RV	RETICULOCITOS	1.56	12.7	2.04
	NORMOCITOS	7.24	0.75	5.2
RBSA	RETICULOCITOS	4.2	2.1	3.7
	NORMOCITOS	0.1	0	0
TRX	RETICULOCITOS	0.3	0.6	0.4
	NORMOCITOS	0	0	0

