Mostrar el registro sencillo del ítem

dc.contributor.advisorPinillos Medina, Ingred
dc.contributor.authorAvellaneda Bustos, Daniela Alejandra
dc.contributor.authorBarrera González, Astrid Carolina
dc.contributor.authorCalderón Cárdenas, Laura Manuela
dc.date.accessioned2021-06-17T17:15:34Z
dc.date.available2021-06-17T17:15:34Z
dc.date.issued2020-11-10
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/249
dc.description.abstractLas garrapatas, se encuentran categorizadas como arácnidos pertenecientes al orden Ixodida, compuesto por las familias Ixodidae, Argasidae y Nuttalliellidae. En esta revisión sistemática, se considerarán específicamente garrapatas de la familia Ixodidae, conocidas como garrapatas duras; de estas se resaltan sus características morfológicas y la capacidad que tienen de obtener y emplear la sangre de su huésped, durante la evolución de su ciclo de vida, de ahí que se conozcan como ectoparásitos hematófagos. Las garrapatas presentan una amplia distribución geográfica, en regiones tropicales y subtropicales, siendo así importantes a nivel sanitario, debido al impacto que presentan en la salud, principalmente; en el sector ganadero y la influencia que tienen sobre la economía. Con el fin de mitigar aspectos como el mencionado anteriormente y otros expuestos en el desarrollo de esta revisión sistemática, existen diferentes alternativas destinadas al control de garrapatas, dentro de los que se encuentran los acaricidas químicos, los cuales son un foco de investigación, dado su efecto nocivo y la afectación sobre la salud humana y animal, destacando principalmente la resistencia de garrapatas como Rhipicephalus (Boophilus) microplus y Rhipicephalus sanguineus, así como las repercusiones demostradas sobre el medio ambiente y la población humana; por ello es importante identificar alternativas de control biológico efectivas, que tengan como objetivo minimizar el desarrollo de resistencia y a su vez, generar conciencia respecto a la disminución del uso de acaricidas químicos, dado su impacto en salud humana, animal y medio ambiental.spa
dc.description.abstractTicks are categorized as arachnids belonging to the Ixodida order, composed of the Ixodidae, Argasidae and Nuttalliellidae families. In this systematic review, we will specifically consider ticks of the Ixodidae family, known as hard ticks; Of these, their morphological characteristics and the capacity they have to obtain and use the blood of their host are highlighted, during the evolution of their life cycle, hence they are known as hematophagous ectoparasites. Ticks present a wide geographic distribution, in tropical and subtropical regions, being thus important at the sanitary level, mainly due to the impact they present on health; in the livestock sector and the influence they have on the economy. In order to mitigate aspects such as the one mentioned above and others exposed in the development of this systematic review, there are different alternatives aimed at tick control, among which are chemical acaricides, which are a focus of research, given their harmful effect and affectation on human and animal health, mainly highlighting the resistance of ticks such as Rhipicephalus (Boophilus) microplus and Rhipicephalus sanguineus, as well as the demonstrated repercussions on the environment and the human population; For this reason, it is important to identify effective biological control alternatives that aim to minimize the development of resistance and, in turn, raise awareness regarding the decrease in the use of chemical acaricides, given their impact on human, animal and environmental health.eng
dc.description.tableofcontentsResumen Abstract 1. Introducción 7 2. Objetivos 10 2.1 Objetivo general 10 2.2 Objetivos específicos 10 3. Antecedentes 11 4. Marco teórico 15 4.1 Garrapatas 15 4.1.1 Generalidades 15 4.1.2 Ciclo de vida de la familia Ixodidae 16 4.1.3 Rhipicephalus sanguineus 20 4.1.4 Rhipicephalus microplus 20 4.2 Control de garrapatas 20 4.2.1 Control químico 22 4.2.1.1 Desarrollo de resistencia a plaguicidas químicos 23 4.2.2 Control de origen biológico 26 4.2.2.1 Aceites esenciales 26 4.2.2.2 Hongos entomopatogenos 28 4.2.2.3 Bacterias entomopatogenas 31 4.2.2.4 Nematodos entomopatogenos 34 4.2.2.5 Semioquimicos 35 5. Diseño metodológico 37 5.1 Tipo de investigación 37 5.2 Enfoque de la investigación 37 5.3 Universo 37 5.4 Población 37 5.5 Muestra 37 5.6 Criterios de exclusión 38 5.7 Criterios de inclusión 38 6. Resultados y discusión 39 7. Conclusiones 56 8. Referencias bibliográficas 57 Anexo 67spa
dc.format.extent97p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleAnalizar mediante una revisión sistemática las alternativas de control integrado de origen biológico, frente a la resistencia a acaricidas, de garrapatas de la familia Ixodidae (Rhipicephalus Sanguineus y Rhipicephalus (Boophilus) Microplus)spa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.Cspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesThe Center For Food Security And Public Health, Institute International Cooperation in Animal Biologics. Rhipicephalus (Boophilus) microplus Garrapata del ganado del sur, garrapata del ganado bovino. Febrero 2007 [Internet]. 2007;1–3. Available from: http://www.cfsph.iastate.edu/Factsheets/es/boophilus_micropluses.pdf%0Ahttp://ww w.cfsph.iastate.edu/?lang=esspa
dc.relation.referencesPolanco D, Rios L. Aspectos biológicos y ecológicos de las garrapatas duras. Corpoica Cienc y Tecnol Agropecu. 2016;17(1):81–95.spa
dc.relation.referencesVargas Cuy DH, Torres Caycedo MI, Pulido Medellín MO. Anaplasmosis y Babesiosis : estudio actual. Pensam Y Acción [Internet]. 2019;26(26):45–60. Available from: https://revistas.uptc.edu.co/revistas/index.php/pensamiento_accion/article/view/9723spa
dc.relation.referencesReina D, Frontera EM, Pariente FJ, Habela MÁ. importantes de los ovinos. :32–9.spa
dc.relation.referencesBayer de México SA de CV. Manual Bayer de la Garrapata. 2013;17. Available from: https://www.sanidadanimal.bayer.com.mx/es/animalesproductivos/bovinos/manuales -bayer/manual-bayer-de-la-garrapata.phpspa
dc.relation.referencesHulse EJ, Davies JOJ, Simpson AJ, Sciuto AM, Eddleston M. Respiratory complications of organophosphorus nerve agent and insecticide poisoning: Implications for respiratory and critical care. Am J Respir Crit Care Med. 2014;190(12):1342–54.spa
dc.relation.referencesCerda P, Silva L, Gutiérrez W, Mieres JJ, París E, Ríos JC. Intoxicaciones veterinarias en Chile reportadas al Centro de Información Toxicológica de la Pontificia Universidad Católica de Chile (CITUC). Rev Toxicol. 2015;32(2):117–20.spa
dc.relation.referencesAlonso-Díaz M, Rodríguez-Vivas R, Fragoso-Sánchez H, Rosario-Cruz R. Resistencia de la garrapata Boophilus microplus a los ixodicidas Ixodicide resistance of the the Boophilus microplus tick to ixodicides. Arch Med [Internet]. 2006;38(2):105–13. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0301- 732X2006000200003spa
dc.relation.referencesRodríguez-vivas I, Rosado-Aguilar JA, Ojeda-chi MM, Carlos L, Trinidad-Martínez I, Bolio-González ME. CONTROL INTEGRADO DE GARRAPATAS EN LA GANADERÍA BOVINA Integrated control of ticks in bovine livestock Rhipicephalus microplus. Ecosistemas y Recur Agropecu [Internet]. 2014;1(3):295– 308. Available from: http://www.scielo.org.mx/pdf/era/v1n3/v1n3a9.pdfspa
dc.relation.referencesBotha CJ, Coetser H, Labuschagne L, Basson A. Confirmed organophosphorus and carbamate pesticide poisonings in South African wildlife (2009-2014). J S Afr Vet Assoc. 2015;86(1):1–4.spa
dc.relation.referencesVillamil LC, Romero JR, Soler D. Salud Pública Veterinaria, bienestar de la humanidad: retos y tendencias en el siglo XXI para el sector agropecuario. 1ra. ed. Colombia: Kimpres Ltda. 2012spa
dc.relation.referencesSantos FO, Lima HG, de Souza Santa Rosa S, das Mercês NB, Serra TM, Uzeda RS, et al. In vitro acaricide and anticholinesterase activities of Digitaria insularis (Poaceae) against Rhipicephalus (Boophilus) microplus. Vet Parasitol [Internet]. 2018;255(April):102–6. Available from: https://doi.org/10.1016/j.vetpar.2018.04.003spa
dc.relation.referencesEstrada-Peña A. Orden Ixodida: Las garrapatas. Rev IDEA-SEA. 2015;13:30–6.spa
dc.relation.referencesCafarchia C, Immediato D, Iatta R, Ramos RAN, Lia RP, Porretta D, et al. Native strains of Beauveria bassiana for the control of Rhipicephalus sanguineus sensu lato. Parasites and Vectors. 2015;8(1):1–7.spa
dc.relation.referencesRemedio RN, Nunes PH, Anholeto LA, Oliveira PR, Camargo-Mathias MI. Morphological effects of neem (Azadirachta indica A. Juss) seed oil with known azadirachtin concentrations on the oocytes of semi-engorged Rhipicephalus sanguineus ticks (Acari: Ixodidae). Parasitol Res. 2015;114(2):431–44.spa
dc.relation.referencesDantas ACS, Machado DMR, Araujo AC, Oliveira-Junior RG, Lima-Saraiva SRG, Ribeiro LAA, et al. Acaricidal activity of extracts from the leaves and aerial parts of Neoglaziovia variegata (Bromeliaceae) on the cattle tick Rhipicephalus (Boophilus) microplus. Res Vet Sci [Internet]. 2015;100:165–8. Available from: http://dx.doi.org/10.1016/j.rvsc.2015.04.012spa
dc.relation.referencesde Souza Chagas AC, de Sena Oliveira MC, Giglioti R, Santana RCM, Bizzo HR, Gama PE, et al. Efficacy of 11 Brazilian essential oils on lethality of the cattle tick Rhipicephalus (Boophilus) microplus. Ticks Tick Borne Dis [Internet]. 2016;7(3):427–32. Available from: http://dx.doi.org/10.1016/j.ttbdis.2016.01.001spa
dc.relation.referencesCosta-Júnior LM, Miller RJ, Alves PB, Blank AF, Li AY, Pérez de León AA. Acaricidal efficacies of Lippia gracilis essential oil and its phytochemicals against organophosphate-resistant and susceptible strains of Rhipicephalus (Boophilus) microplus. Vet Parasitol [Internet]. 2016;228:60–4. Available from: http://dx.doi.org/10.1016/j.vetpar.2016.05.028spa
dc.relation.referencesBenelli G, Pavela R, Canale A, Mehlhorn H. Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res [Internet]. 2016;115(7):2545–60. Available from: http://dx.doi.org/10.1007/s00436016-5095-1spa
dc.relation.referencesDe Meneghi D, Stachurski F, Adakal H. Experiences in tick control by acaricide in the traditional cattle sector in Zambia and Burkina Faso: Possible environmental and public health implications. Front Public Heal. 2016;4(NOV):1–11.spa
dc.relation.referencesPereira SG, de Araújo SA, Guilhon GMSP, Santos LS, Junior LMC. In vitro acaricidal activity of Crescentia cujete L. fruit pulp against Rhipicephalus microplus. Parasitol Res. 2017;116(5):1487–93.spa
dc.relation.referencesChaudhary S, Kanwar RK, Sehgal A, Cahill DM, Barrow CJ, Sehgal R, et al. Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Front Plant Sci. 2017;8(May):1–13.spa
dc.relation.referencesJayaraj R, Megha P, Sreedev P. Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol. 2016;9(3–4):90–100.spa
dc.relation.referencesVeneziano R. Инновационные подходы к обеспечению качества в здравоохраненииNo Title. Вестник Росздравнадзора. 2017;6:5–9.spa
dc.relation.referencesVillarreal JP, Dos Santos PR, Da Silva MAMP, Azambuja RHM, Gonçalves CL, Escareño JJH, et al. Evaluation of phytotherapy alternatives for controlling Rhipicephalus (Boophilus) microplus in vitro. Rev Bras Parasitol Vet. 2017;26(3):299–306.spa
dc.relation.referencesBanumathi B, Vaseeharan B, Rajasekar P, Prabhu NM, Ramasamy P, Murugan K, et al. Exploitation of chemical, herbal and nanoformulated acaricides to control the cattle tick, Rhipicephalus (Boophilus) microplus – A review. Vet Parasitol [Internet]. 2017;244:102–10. Available from: http://dx.doi.org/10.1016/j.vetpar.2017.07.021spa
dc.relation.referencesRodriguez-Vivas RI, Jonsson NN, Bhushan C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol Res. 2018;117(1):3–29.spa
dc.relation.referencesSilva Lima A, Milhomem MN, Santos Monteiro O, Arruda ACP, de Castro JAM, Fernandes YML, et al. Seasonal analysis and acaricidal activity of the thymol-type essential oil of Ocimum gratissimum and its major constituents against Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res. 2018;117(1):59–65.spa
dc.relation.referencesSingh NK, Miller RJ, Klafke GM, Goolsby JA, Thomas DB, Leon AAP de. In-vitro efficacy of a botanical acaricide and its active ingredients against larvae of susceptible and acaricide-resistant strains of Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae). Ticks Tick Borne Dis [Internet]. 2018;9(2):201–6. Available from: http://dx.doi.org/10.1016/j.ttbdis.2017.09.005spa
dc.relation.referencesFernández-Salas A, Alonso-Díaz MÁ, Morales RAA, Lezama-Gutiérrez R, Cervantes-Chávez JA. Phylogenetic Relationships and Acaricidal Effects of Beauveria bassiana Obtained from Cattle Farm Soils Against Rhipicephalus microplus . J Parasitol. 2018;104(3):275–82.spa
dc.relation.referencesAbreu MR de, Pereira MC, Simioni PU, Nodari EF, Paiatto LN, Camargo-Mathias MI. Immunomodulatory and morphophysiological effects of Rhipicephalus sanguineus s. l. (Acari: Ixodidae) salivary gland extracts. Vet Immunol Immunopathol [Internet]. 2019;207(October 2018):36–45. Available from: https://doi.org/10.1016/j.vetimm.2018.11.017spa
dc.relation.referencesAraújo LX, Novato TPL, Zeringota V, Maturano R, Melo D, da Silva BC, et al. Synergism of thymol, carvacrol and eugenol in larvae of the cattle tick, Rhipicephalus microplus, and brown dog tick, Rhipicephalus sanguineus. Med Vet Entomol. 2016;30(4):377–82.spa
dc.relation.referencesRey-Valeirón C, Pérez K, Guzmán L, López-Vargas J, Valarezo E. Acaricidal effect of Schinus molle (Anacardiaceae) essential oil on unengorged larvae and engorged adult females of Rhipicephalus sanguineus (Acari: Ixodidae). Exp Appl Acarol [Internet]. 2018;76(3):399–411. Available from: https://doi.org/10.1007/s10493- 0180303-6spa
dc.relation.referencesMoncada A, Villar D, Chaparro J, Angulo J, Mahecha L. Aproximación al uso de hongos entomopatógenos y vacunas para el control sostenible de garrapatas en sistemas ganaderos : revisión • Approach to the use of entomopathogenic fungi and vaccines paragraph sustainable control of ticks in farming systems : revi. Av en Investig Agropecu [Internet]. 2015;19(3):55–72. Available from: http://www.redalyc.org/articulo.oa?id=83743886006spa
dc.relation.referencesPoliti FAS, Fantatto RR, da Silva AA, Moro IJ, Sampieri BR, Camargo-Mathias MI, et al. Evaluation of Tagetes patula (Asteraceae) as an ecological alternative in the search for natural control of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Exp Appl Acarol [Internet]. 2019;77(4):601–18. Available from: https://doi.org/10.1007/s10493-019-00368-2spa
dc.relation.referencesTorres M. Una sola salud une humanos, animales y ecosistemas [Internet]; 15 enero 2019. [citado 15 agosto 2020]. Disponible en: http://www.cresa.cat/blogs/sociedad/es/una-sola-salut-uneix-humans-animals-i- ecosistemes/spa
dc.relation.referencesOrganización mundial de sanidad animal. «One Health, Una sola salud» para preservar [Internet]. [citado 15 agosto 2020]. Disponible en: https://www.oie.int/es/para-los-periodistas/una-sola-salud/spa
dc.relation.referencesdel Puerto Rodríguez AM, Suárez Tamayo S, Palacio Estrada DE. Efectos de los plaguicidas sobre el ambiente y la salud. Rev Cubana Hig Epidemiol. 2014;52(3):372–87.spa
dc.relation.referencesCárdenas O, Silva E, Morales L, Ortiz J. Estudio epidemiológico de exposición a plaguicidas organofosforados y carbamatos en siete departamentos colombianos, 1998-2001. Biomédica. 2005;25(2):170.spa
dc.relation.referencesFilho JG de O, Ferreira LL, Silva F de O, Menezes KMF, Muniz ER, de Paula LGF, et al. Persistence and efficacy of a new formulatiobased on dog allomonal repellents against Rhipicephalus sanguineus sensu lato tick. Rev Bras Parasitol Vet. 2018;27(3):313–8.spa
dc.relation.referencesKumar R, Klafke GM, Miller RJ. Voltage-gated sodium channel gene mutations and pyrethroid resistance in Rhipicephalus microplus. Ticks Tick Borne Dis [Internet]. 2020;11(3):101404. Available from: https://doi.org/10.1016/j.ttbdis.2020.101404spa
dc.relation.referencesVillar D, Gutiérrez J, Piedrahita D, Rodríguez-Durán A, Cortés-Vecino JA, et al. Resistencia in vitro a acaricidas tópicos de poblaciones de garrapatas Rhipicephalus (Boophilus) microplus provenientes de cuatro departamentos de Colombia. CES Med Vet y Zootec. 2016;58–70.spa
dc.relation.referencesBeys-da-Silva WO, Rosa RL, Berger M, Coutinho-Rodrigues CJB, Vainstein MH, Schrank A, et al. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp Parasitol [Internet]. 2020;208:107812. Available from: https://doi.org/10.1016/j.exppara.2019.107812spa
dc.relation.referencesKhan A, Nasreen N, Niaz S, Ayaz S, Naeem H, Muhammad I, et al. Acaricidal efficacy of Calotropis procera (Asclepiadaceae) and Taraxacum officinale (Asteraceae) against Rhipicephalus microplus from Mardan, Pakistan. Exp Appl Acarol [Internet]. 2019;78(4):595–608. Available from: https://doi.org/10.1007/s10493-019-00406-zspa
dc.relation.referencesCamargo MG, Nogueira MRS, Marciano AF, Perinotto WMS, Coutinho-Rodrigues CJB, Scott FB, et al. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Vet Parasitol [Internet]. 2016;223:38–42. Available from: http://dx.doi.org/10.1016/j.vetpar.2016.04.014spa
dc.relation.referencesPavela R, Canale A, Mehlhorn H, Benelli G. Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: A review. Res Vet Sci [Internet]. 2016;109:1–9. Available from: http://dx.doi.org/10.1016/j.rvsc.2016.09.001spa
dc.relation.referencesOyagbemi TO, Ashafa A, Adejinmi JO, Oguntibeju OO. Preliminary investigation of acaricidal activity of leaf extract of Nicotiana tabacum on dog tick Rhipicephalus sanguineus. Vet World. 2019;12(10):1624–9.spa
dc.relation.referencesMartínez RM, Cerrilla MEO, Haro JGH, Garza JRK, Ramos JJZ, Robles RS. The use of essential oils in farm animals. Interciencia. 2015;40(11):744–50.spa
dc.relation.referencesSharifi-Rad J, Sureda A, Tenore GC, Daglia M, Sharifi-Rad M, Valussi M, et al. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Vol. 22, Molecules. 2017.spa
dc.relation.referencesRustiguel CB, Fernández-Bravo M, Guimarães LHS, Moraga EQ. Different strategies to kill the host presented by Metarhizium anisopliae and Beauveria bassiana. Can J Microbiol. 2018;64(3):191–200.spa
dc.relation.referencesAw KMS, Hue SM. Mode of infection of Metarhizium spp. Fungus and their potential as biological control agents. J Fungi. 2017;3(2).spa
dc.relation.referencesJouzani GS, Valijanian E, Sharafi R. Bacillus thuringiensis: a successful insecticide with new environmental features and tidings. Appl Microbiol Biotechnol. 2017;101(7):2691–711.spa
dc.relation.referencesRuiu L. Insect pathogenic bacteria in integrated pest management. Insects. 2015;6(2):352–67.spa
dc.relation.referencesSzczepańska A, Kiewra D, Guz-Regner K. Sensitivity of Ixodes ricinus (L., 1758) and Dermacentor reticulatus (Fabr., 1794) ticks to Bacillus thuringiensis isolates: preliminary study. Parasitol Res. 2018;117(12):3897–902.spa
dc.relation.referencesMelo ALDA, Soccol VT, Soccol CR. Bacillus thuringiensis: Mechanism of action, resistance, and new applications: A review. Crit Rev Biotechnol. 2016;36(2):317–26.spa
dc.relation.referencesPalma L, Berry C. Understanding the structure and function of Bacillus thuringiensis toxins. Toxicon. 2016;109:1–3.spa
dc.relation.referencesSamish M, Alekseev E, Glazer I. Interaction between ticks (Acari: Ixodidae) and pathogenic nematodes (Nematoda): Susceptibility of tick species at various developmental stages. J Med Entomol. 1999;36(6):733–40.spa
dc.relation.referencesBiocontrol of Ticks by Entomopathogenic Nematodes. :589–94.spa
dc.relation.referencesde Oliveira Filho JG, Ferreira LL, Sarria ALF, Pickett JA, Birkett MA, Mascarin GM, et al. Brown dog tick, Rhipicephalus sanguineus sensu lato, infestation of susceptible dog hosts is reduced by slow release of semiochemicals from a less susceptible host. Ticks Tick Borne Dis [Internet]. 2017;8(1):139–45. Available from: http://dx.doi.org/10.1016/j.ttbdis.2016.10.010spa
dc.relation.referencesGowrishankar S, Latha BR, Sreekumar C, Leela V. Innovative way to dispense pheromones for off-host control of Rhipicephalus sanguineus sensu lato ticks. Vet Parasitol [Internet]. 2019;275:108936. Available from: https://doi.org/10.1016/j.vetpar.2019.108936spa
dc.relation.referencesGowrishankar S, Latha BR, Sreekumar C, Leela V. Comparison of in-vitro bioassays for evaluation of the response of different stages of Rhipicephalus sanguineus sensu lato to calcium alginate encapsulated pheromone beads. Exp Appl Acarol [Internet]. 2019;77(3):455–62. Available from: http://dx.doi.org/10.1007/s10493-019-00340-0spa
dc.relation.referencesDantas-Torres F, Chomel BB, Otranto D. Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol [Internet]. 2012;28(10):437–46. Available from: http://dx.doi.org/10.1016/j.pt.2012.07.003spa
dc.relation.referencesRyu S, Kim BI, Lim JS, Tan CS, Chun BC. One health perspectives on emerging public health threats. J Prev Med Public Heal. 2017;50(6):411–4.spa
dc.relation.referencesLima de Souza JR, Oliveira PR de, Anholeto LA, Arnosti A, Daemon E, Remedio RN, et al. Effects of carvacrol on oocyte development in semi-engorged Rhipicephalus sanguineus sensu lato females ticks (Acari: Ixodidae). Micron [Internet]. 2019;116(June 2018):66–72. Available from: https://doi.org/10.1016/j.micron.2018.09.015spa
dc.relation.references.Fernández-Salas A, Alonso-Díaz MA, Alonso-Morales RA. Effect of entomopathogenic native fungi from paddock soils against Rhipicephalus microplus larvae with different toxicological behaviors to acaricides. Exp Parasitol [Internet]. 2019;204(November 2018):107729. Available from: https://doi.org/10.1016/j.exppara.2019.107729spa
dc.relation.referencesJyoti, Singh NK, Singh H, Mehta N, Rath SS. In vitro assessment of synergistic combinations of essential oils against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Exp Parasitol [Internet]. 2019;201(April):42–8. Available from: https://doi.org/10.1016/j.exppara.2019.04.007spa
dc.relation.referencesRemedio RN, Nunes PH, Anholeto LA, Oliveira PR, Sá ICG, Camargo-Mathias MI. Morphological alterations in salivary glands of Rhipicephalus sanguineus ticks (Acari: Ixodidae) exposed to neem seed oil with known azadirachtin concentration. Micron. 2016;83:19–31.spa
dc.relation.referencesKonig IFM, Oliveira MVS, Gonçalves RRP, Peconick AP, Thomasi SS, Anholeto LA, et al. Low concentrations of acetylcarvacrol induce drastic morphological damages in ovaries of surviving Rhipicephalus sanguineus sensu lato ticks (Acari: Ixodidae). Micron. 2020;129(November).spa
dc.relation.referencesPrado-Rebolledo OF, Molina-Ochoa J, Lezama-Gutiérrez R, García-Márquez LJ, Minchaca-Llerenas YB, Morales-Barrera E, et al. Effect of Metarhizium anisopliae (Ascomycete), cypermethrin, and D-limonene, alone and combined, on larval mortality of Rhipicephalus sanguineus (Acari: Ixodidae). J Med Entomol. 2017;54(5):1323–7.spa
dc.relation.referencesSemi-sintético EDOC. ACETILCARVACROL NO CARRAPATO Rhipicephalus IXODIDAE ). EFICÁCIA DO COMPOSTO SEMI-SINTÉTICO ACETILCARVACROL NO CARRAPATO Rhipicephalus IXODIDAE ). 2019;spa
dc.relation.referencesCoelho L, de Paula LGF, Alves S das GA, Sampaio ALN, Bezerra GP, Vilela FMP, et al. Combination of thymol and eugenol for the control of Rhipicephalus sanguineus sensu lato: Evaluation of synergism on immature stages and formulation development. Vet Parasitol. 2020;277.spa
dc.relation.referencesMonteiro CMO, Araújo LX, Matos RS, Da Silva Golo P, Angelo IC, De Souza Perinotto WM, et al. Association between entomopathogenic nematodes and fungi for control of Rhipicephalus microplus (Acari: Ixodidae). Parasitol Res. 2013;112(10):3645–51.spa
dc.relation.referencesAlves FM, Bernardo CC, Paixão FRS, Barreto LP, Luz C, Humber RA, et al. Heatstressed Metarhizium anisopliae: viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus. Parasitol Res [Internet]. 2017;116(1):111–21. Available from: http://dx.doi.org/10.1007/s00436-016-5267-zspa
dc.relation.referencesde Mendonça AÉ, Moreira RG, da Penha Henriques do Amaral M, de Oliveira Monteiro CM, de Mello V, Vilela FMP, et al. Entomopathogenic nematodes in pharmaceutical formulations for Rhipicephalus microplus (Acari: Ixodidae) control: In vitro evaluation of compatibility, thermotolerance, and efficiency. Ticks Tick Borne Dis. 2019;10(4):781–6.spa
dc.relation.referencesMonteiro C, Coelho L, de Paula LGF, Fernandes ÉKK, Dolinski C, Bittencourt VREP, et al. Efficacy of entomopathogenic nematodes in insect cadaver formulation against engorged females of Rhipicephalus microplus (Acari: Ixodidae) in semi-field conditions. Ticks Tick Borne Dis. 2020;11(1).spa
dc.relation.referencesFernández-Ruvalcaba M, Peña-Chora G, Romo-Martínez A, Hernández-Velázquez V, De La Parra AB, De La Rosa DP. Evaluation of Bacillus thuringiensis pathogenicity for a strain of the tick, Rhipicephalus microplus, resistant to chemical pesticides. J Insect Sci. 2010;10(186):1–6.spa
dc.relation.referencesLormendez CC, Fernandez-ruvalcaba M, Adames-mancebo M, Hernandez- velazquez VM, Zuñiga-navarrete F, Flores- G, et al. Mass production of a S-layer protein of Bacillus thuringiensis and its toxicity to the cattle tick Rhipicephalus microplus. 2019;1–9.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembBoophilus
dc.subject.lembGarrapatas
dc.subject.lembIxodidae
dc.subject.proposalRhipicephalus sanguineusspa
dc.subject.proposalRhipicephalus microplusspa
dc.subject.proposalResistencia garrapaticidaspa
dc.subject.proposalControl garrapaticidaspa
dc.subject.proposalRevisión sistemática de literaturaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020