Mostrar el registro sencillo del ítem

dc.contributor.advisorMuñoz Henao, Julián Esteban
dc.contributor.advisorPinilla Bermúdez, Gladys
dc.contributor.authorChaves Alfonso, Gabriel German
dc.contributor.authorCoronado Ladino, Yenifer Tatiana
dc.date.accessioned2021-11-23T19:59:21Z
dc.date.available2021-11-23T19:59:21Z
dc.date.issued2019-01
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/3714
dc.description.abstractLa candidiasis es una de las infecciones más frecuentes en pacientes hospitalizados o con alteraciones en su sistema inmunológico, actualmente se ha convertido en una problemática creciente debido a la resistencia adquirida por las levaduras del género Candida a diferentes antifúngicos utilizados en el tratamiento de esta micosis. Como alternativa terapéutica han sido estudiados en las últimas décadas varios péptidos antimicrobianos con el fin de investigar nuevos tratamientos de amplio espectro, especialmente para levaduras productoras de biopelículas. Este es el caso de Candida albicans, una levadura comensal que hace parte del microbiota del ser humano, pero que en pacientes inmunosuprimidos puede causar infecciones cutáneas, subcutáneas y sistémicas, con el agravante de presentar resistencia en algunos casos a la terapia convencionalmente usada para su tratamiento. Los péptidos antimicrobianos están presentes en animales, plantas y otros microorganismos, haciendo parte del sistema inmune innato. La catelicidina humana LL37, péptido antimicrobiano catiónico, es una molécula que contiene tanto un dominio catelina como un dominio C-terminal antimicrobiano. Basados en lo anterior, se realizó un estudio de tipo cuantitativo; estudios descriptivos y explicativos en donde se utilizaron tres cepas, dos de ellas correspondientes a Candida albicans y una correspondiente a una cepa proveniente de candidiasis recurrente, probando en cada una de ellas cinco concentraciones distintas de péptidos análogos de LL-37 como: AC-1, LL-37,1, AC-2 y D, evidenciando su poder inhibitorio mediante las curvas de crecimiento obtenidas en el equipo BioScreen C. Teniendo en cuenta los cuatro péptidos utilizados, se demostró que los péptidos AC-1 y D evidenciaron una actividad inhibitoria significativa en las tres cepas incluidas en el estudio; con respecto a los otros péptidos, cabe resaltar que LL-37,1 tuvo una excelente capacidad inhibitoria en la cepa Candida albicans 256.spa
dc.description.tableofcontents1. INTRODUCCIÓN 18 2. OBJETIVOS 22 2.1) OBJETIVO GENERAL 22 2.2) OBJETIVOS ESPECÍFICOS 22 3. JUSTIFICACIÓN 23 4. ANTECEDENTES 25 4.1) ESTADO DEL ARTE 25 5. MARCO CONCEPTUAL 27 5.1) GENERALIDADES DE LEVADURAS DEL GÉNERO Candida 27 PATOLOGÍAS OCASIONADAS POR Candida spp 28 5.2) OTROS TIPOS DE CANDIDIASIS 30 5.3) CANDIDIASIS VULVOVAGINAL 30 5.4) CANDIDIASIS ORAL Y MUCOCUTANEA CRONICA 31 5.5) ANTIFÚNGICOS CONTRA LAS CANDIDIASIS 32 5.5.1) Azoles 32 5.5.2) Equinocandinas 33 5.5.3) Polienos 33 5.6) RESISTENCIA A LOS ANTIFÚNGICOS DE Candida spp 34 5.7) PÉPTIDOS ANTIMICROBIANOS 35 5.8) BIOPELÍCULAS EN LEVADURAS DEL GÉNERO Candida 40 6. DISEÑO METODOLÓGICO 43 6.1) UNIVERSO, POBLACIÓN Y MUESTRA 43 6.2) MATERIALES Y MÉTODOS 43 6.3) ANÁLISIS ESTADÍSTICO 43 6.4) DETERMINACIÓN DE FASES DE CRECIMIENTO PARA C. albicans 256, Candida FVF, C. albicans SC5314. 44 6.5) CURVAS DE CRECIMIENTO UTILIZANDO LOS PÉPTIDOS (AC-1, LL-37-1, AC-2 Y D). 44 6.6) CONTROL PARA C. albicans 256, C. albicans SC5314 y Candida FVF. 45 7. RESULTADOS 47 7.1) FASES DE CRECIMIENTO 47 7.2) CURVAS DE CRECIMIENTO UTILIZANDO LOS PÉPTIDOS ANTIMICROBIANOS 49 8. DISCUSIÓN 57 9. CONCLUSIONES 62 10. REFERENCIASeng
dc.format.extent75p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2018spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleActividad antifúngica in Vitro de péptidos análogos derivados de LL-37 contra levaduras del género Candidaspa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.identifier.barcode58675
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.Cspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesAlvarez-moreno CA. Burden of Fungal Infections in Colombia. 2018;1–13.spa
dc.relation.referencesMerseguel KB, Nishikaku AS, Rodrigues AM, Padovan AC, Carmona R, Salles A, et al. Genetic diversity of medically important and emerging Candida species causing invasive infection. 2015;1–11.spa
dc.relation.referencesPapon N, Courdavault V, Clastre M, Bennett RJ, Nac N-C. Emerging and Emerged Pathogenic Candida Species : Beyond the Candida albicans Paradigm. 2013;9(9).spa
dc.relation.referencesWhibley N, Gaffen SL. Beyond Candida albicans: Mechanisms of immunity to non-albicans Candida species. Cytokine. 2015;76(1):42–52.spa
dc.relation.referencesPfaller MA, Messer SA, Jones RN, Castanheira M. Antifungal susceptibilities of Candida , Cryptococcus neoformans and Aspergillus fumigatus from the Asia and Western Paci fi c region : data from the SENTRY antifungal surveillance program ( 2010 – 2012 ). 2015;(November 2014):1–6. Available from: http://dx.doi.org/10.1038/ja.2015.29spa
dc.relation.referencesPfaller MA. Antifungal Drug Resistance : Mechanisms , Epidemiology , and Consequences for Treatment. AJM [Internet]. 2012;125(1):S3–13. Available from: http://dx.doi.org/10.1016/j.amjmed.2011.11.001spa
dc.relation.referencesPfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Geographic Variations in Species Distribution and Echinocandin and Azole Antifungal Resistance Rates among Candida Bloodstream Infection Isolates : Report from the SENTRY Antimicrobial Surveillance Program ( 2008 to 2009 ) ᰔ. 2011;49(1):396–9.spa
dc.relation.referencesTema DE. Péptidos antimicrobianos. 2010;14(1):55–67.spa
dc.relation.referencesde la Fuente-Núñez C, Silva ON, Lu TK, Franco OL. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol Ther. 2017;spa
dc.relation.referencesTsai PW, Yang CY, Chang HT, Lan CY. Human antimicrobial peptide LL-37 inhibits adhesion of Candida albicans by interacting with yeast cell-wall carbohydrates. PLoS One. 2011;6(3).spa
dc.relation.referencesCarrascosa JM. Mecanismo De acción De ustekinumab y su relevancia en la patogénesis De la psoriasis. Impacto en el sistema inmune. Actas Dermosifiliogr. 2012;103(SUPPL. 2):7–15.spa
dc.relation.referencesAntinori S, Milazzo L, Sollima S, Galli M, Corbellino M. European Journal of Internal Medicine Candidemia and invasive candidiasis in adults : A narrative review. Eur J Intern Med [Internet]. 2016; Available from: http://dx.doi.org/10.1016/j.ejim.2016.06.029spa
dc.relation.referencesBlumberg HM, Jarvis WR, Soucie JM, Edwards JE, Patterson JE, Pfaller MA, et al. Risk Factors for Candidal Bloodstream Infections in Surgical Intensive Care Unit Patients : The NEMIS Prospective Multicenter Study. 2001;6:177– 86.spa
dc.relation.referencesGiongo JL, de Almeida Vaucher R, Fausto VP, Quatrin PM, Lopes LQS, Santos RCV, et al. Anti-Candida activity assessment of Pelargonium graveolens oil free and nanoemulsion in biofilm formation in hospital medical supplies. Microb Pathog. 2016;100:170–8.spa
dc.relation.referencesKodedová M, Sychrová H. Synthetic antimicrobial peptides of the halictines family disturb the membrane integrity of Candida cells. Biochim Biophys Acta - Biomembr. 2017;1859(10):1851–8.spa
dc.relation.referencesScarsini M, Tomasinsig L, Arzese A, D’Este F, Oro D, Skerlavaj B. Antifungal activity of cathelicidin peptides against planktonic and biofilm cultures of Candida species isolated from vaginal infections. Peptides. 2015;71:211–21.spa
dc.relation.referencesMaurya IK, Thota CK, Sharma J, Tupe SG, Chaudhary P, Singh MK, et al. Mechanism of action of novel synthetic dodecapeptides against Candida albicans. Biochim Biophys Acta - Gen Subj. 2013;1830(11):5193–203.spa
dc.relation.referencesChang H-T, Tsai P-W, Huang H-H, Liu Y-S, Chien T-S, Lan C-Y. LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic. Biochem J. 2012;441(3):963– 70.spa
dc.relation.referencesKabir MA, Hussain MA, Ahmad Z. Candida albicans : A Model Organism for Studying Fungal Pathogens. 2012;2012.spa
dc.relation.referencesCassone A. Vulvovaginal Candida albicans infections: Pathogenesis, immunity and vaccine prospects. BJOG An Int J Obstet Gynaecol. 2015;122(6):785–94.spa
dc.relation.referencesNetea MG, Brown GD, Kullberg BJ, Gow NAR. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6(1):67–78.spa
dc.relation.referencesShibata N, Kobayashi H, Suzuki S. Immunochemistry of pathogenic yeast, Candida species, focusing on mannan. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(6):250–65.spa
dc.relation.referencesMothibe J V., Patel M. Pathogenic characteristics of Candida albicans isolated from oral cavities of denture wearers and cancer patients wearing oral prostheses. Microb Pathog. 2017;110:128–34.spa
dc.relation.referencesLuis J, Pozo D. Revista Iberoamericana de Micología Candidiasis asociada a biopelículas. 2016;33(3):176–83.spa
dc.relation.referencesNobile CJ, Fox EP, Nett JE, Sorrells TR, Mitrovich QM, Hernday AD, et al. A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell. 2012;148(1–2):126–38.spa
dc.relation.referencesRajendran R, Sherry L, Nile CJ, Sherriff A, Johnson EM, Hanson MF, et al. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection-Scotland, 2012-2013. Clin Microbiol Infect. 2016;22(1):87–93.spa
dc.relation.referencesHorn DL, Neofytos D, Anaissie EJ, Fishman JA, Steinbach WJ, Olyaei AJ, et al. Epidemiology and Outcomes of Candidemia in 2019 Patients : Data from the Prospective Antifungal Therapy Alliance Registry. 2019;48(August 2018):1695–703.spa
dc.relation.referencesMcCarty TP, Pappas PG. Invasive Candidiasis. Infect Dis Clin North Am. 2016;30(1):103–24.spa
dc.relation.referencesClancy CJ, Nguyen MH. Finding the missing 50% of invasive candidiasis: How nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 2013;56(9):1284–92.spa
dc.relation.referencesKaaniche FM, Allela R, Cherif S, Algia N ben. Invasive candidiasis in critically ill patients. Trends Anaesth Crit Care. 2016;11:1–5.spa
dc.relation.referencesValdivielso-Ramos M, Mauleón C. Diagnóstico diferencial de la candidiasis sistémica. Piel. 2012;27(10):581–90.spa
dc.relation.referencesSauget M, Valot B, Bertrand X, Hocquet D. Can MALDI-TOF Mass Spectrometry Reasonably Type Bacteria ? Trends Microbiol [Internet]. 2016;xx:1–9. Available from: http://dx.doi.org/10.1016/j.tim.2016.12.006spa
dc.relation.referencesIavazzo C, Gkegkes ID, Zarkada IM, Falagas ME. Boric Acid for Recurrent Vulvovaginal Candidiasis : 2011;20(8).spa
dc.relation.referencesTardif KD, Schlaberg R. Development of a real-time PCR assay for the direct detection of Candida species causing Vulvovaginal candidiasis. Diagn Microbiol Infect Dis. 2017;88(1):39–40.spa
dc.relation.referencesSun M-G, Huang Y, Xu Y-H, Cao Y-X. Efficacy of vitamin B complex as an adjuvant therapy for the treatment of complicated vulvovaginal candidiasis: An in vivo and in vitro study. Biomed Pharmacother. 2017;88:770–7.spa
dc.relation.referencesBlostein F, Levin E, Wagner J, Foxman B. Recurrent Vulvovaginal Candidiasis,. Ann Epidemiol. 2017;spa
dc.relation.referencesAuthors T, Munksgaard B. Oral mucosal fungal infections. 2009;49:39–59.spa
dc.relation.referencesMillsop JW, Fazel N. Oral candidiasis. Vol. 34, Clinics in Dermatology. Elsevier B.V.; 2016. 487-494 p.spa
dc.relation.referencesKhullar G, Vignesh P, Lau YL, Rudramurthy SM, Rawat A, De D, et al. Chronic Mucocutaneous Candidiasis. J Allergy Clin Immunol Pract. 2017;5(4):1119–21.spa
dc.relation.referencesMoriyama B, Gordon LA, Mccarthy M, Stacey A, Walsh TJ, Penzak SR. NIH Public Access. 2015;57(12):718–33.spa
dc.relation.referencesWarrilow AG, Parker JE, Kelly DE, Kelly SL. Candida albicans and Homo sapiens. 2013;57(3):1352–60.spa
dc.relation.referencesEmami S, Tavangar P, Keighobadi M. An overview of azoles targeting sterol 14α-demethylase for antileishmanial therapy. Eur J Med Chem. 2017;135:241–59.spa
dc.relation.referencesAzanza JR, Montejo M. Farmacocinética y farmacodinamia. Interacciones y efectos secundarios. Comparación con otras equinocandinas. Enferm Infecc Microbiol Clin. 2008;26(SUPPL. 14):14–20.spa
dc.relation.referencesKinoshita H, Yoshioka M, Ihara F, Nihira T. Cryptic antifungal compounds active by synergism with polyene antibiotics. J Biosci Bioeng. 2016;121(4):394–8.spa
dc.relation.referencesPerea A. Anfotericina B forma liposómica : un perfil farmacocinético exclusivo . Una historia inacabada . 2012;25(1):17–24.spa
dc.relation.referencesCandida D, De E, Porte L, León P, Gárate C, Guzmán AM, et al. Susceptibilidad a azoles y anfotericina B de aislados de. 2010;149–55.spa
dc.relation.referencesBrilhante RSN, Paiva MAN, Sampaio MS, Teixeira CEC. Macrobrachium amazonicum: 2011;76:268–77.spa
dc.relation.referencesBrilhante RSN, Paiva MAN, Sampaio CMS, Castelo-Branco DSCM, Teixeira CEC, de Alencar LP, et al. Azole resistance in Candida spp. isolated from Catú Lake, Ceará, Brazil: An efflux-pump-mediated mechanism. Brazilian J Microbiol. 2016;47(1):33–8.spa
dc.relation.referencesMorace G, Perdoni F, Borghi E. Antifungal drug resistance in Candida species. J Glob Antimicrob Resist. 2014;2(4):254–9.spa
dc.relation.referencesFernandes T, Silva S, Henriques M. Candida tropicalis biofilm’s matrix- involvement on its resistance to amphotericin B. Diagn Microbiol Infect Dis. 2015;83(2):165–9.spa
dc.relation.referencesTéllez GA, Castaño JC. Péptidos antimicrobianos. Grup Inmunol Mol. 2010;14(1):55–67.spa
dc.relation.referencesRossi DC, Munoz JE, Carvalho DD, Belmonte R, Faintuch B, Borelli P, et al. Therapeutic use of a cationic antimicrobial peptide from the spider Acanthoscurria gomesiana in the control of experimental candidiasis. BMC Microbiol. 2012;12(1):28.spa
dc.relation.referencesZhu M, Liu P, Niu ZW. A perspective on general direction and challenges facing antimicrobial peptides. Chinese Chem Lett. 2016;spa
dc.relation.referencesAgeitos JM, S??nchez-P??rez A, Calo-Mata P, Villa TG. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol. 2016;spa
dc.relation.referencesFabisiak A, Murawska N, Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity. Pharmacol Reports. 2016;68(4):802–8.spa
dc.relation.referencesVandamme D, Landuyt B, Luyten W, Schoofs L. A comprehensive summary of LL-37, the factoctum human cathelicidin peptide. Cell Immunol. 2012;280(1):22–35.spa
dc.relation.referencesWang G. Structures of Human Host Defense Cathelicidin LL-37 and Its Smallest Antimicrobial Peptide KR-12 in Lipid Micelles * □. 2008;spa
dc.relation.referencesMalmsten M. Interactions of Antimicrobial Peptides with Bacterial Membranes and Membrane Components. 2016;16–24.spa
dc.relation.referencesWong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides. 2011;32(10):1996–2002.spa
dc.relation.referencesNobile CJ, Johnsonb AD. Candida albicans biofilms and human disease. Annu Rev Microbiol. 2015;69:71–92.spa
dc.relation.referencesHamid S, Zainab S, Faryal R, Ali N, Sharafat I. Inhibition of secreted aspartyl proteinase activity in biofilms of Candida species by mycogenic silver nanoparticles. Artif Cells, Nanomedicine Biotechnol. 2017;(2016):1–7.spa
dc.relation.referencesSilva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011;19(5):241–7.spa
dc.relation.referencesChandra J, Kuhn DM, Mukherjee PK, Hoyer LL, Cormick TMC, Ghannoum MA. Biofilm Formation by the Fungal Pathogen Candida albicans : Development , Architecture , and Drug Resistance. 2001;183(18):5385–94.spa
dc.relation.referencesTanaka M, Takamura Y, Kawakami T, Aimoto S, Saito H. Effect of amino acid distribution of amphipathic helical peptide derived from human apolipoprotein A-I on membrane curvature sensing. FEBS Lett [Internet]. 2013;587(5):510–5.spa
dc.relation.referencesHollmann A, Martínez M, Noguera ME, Augusto MT, Disalvo A, Santos NC, et al. Colloids and Surfaces B : Biointerfaces Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide – membrane interactions of three related antimicrobial peptides. Colloids Surfaces B Biointerfaces [Internet]. 2016;141:528–36.spa
dc.relation.referencesNuijens T, Piva E, Kruijtzer JAW, Rijkers DTS, Liskamp RMJ, Quaedflieg PJLM. Enzymatic C-terminal amidation of amino acids and peptides. Tetrahedron Lett [Internet]. 2012;53(29):3777–9.spa
dc.relation.referencesAlvares DS, Wilke N, Ruggiero J. BBA - Biomembranes E ff ect of N-terminal acetylation on lytic activity and lipid-packing perturbation induced in model membranes by a mastoparan-like peptide. BBA - Biomembr [Internet]. 2018;1860(3):737–48.spa
dc.relation.referencesAminoácidos y péptidos 1 . :49–62.spa
dc.relation.referencesTsai P, Cheng Y, Hsieh W, Lan C. Responses of Candida albicans to the Human Antimicrobial Peptide LL-37. 2014;52(8).spa
dc.relation.referencesGuirao-abad JP, Sánchez-fresneda R, Alburquerque B, Hernández JA, Argüelles J. Ac ce p cr t. Int J Med Microbiol [Internet]. 2017;spa
dc.relation.referencesTouil HFZ, Boucherit-otmani Z, Boucherit K. ScienceDirect In vitro activity of antifungal combinations against planktonic and sessile cells of Candida albicans isolated from medical devices in an intensive care department. J Mycol Med [Internet]. 2018;6–10.spa
dc.relation.referencesC LM, Novoa C, Carlos M. Uso de anfotericina B deoxicolato y sus reacciones adversas en un hospital universitario en Chile. 2007;spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembMicroorganismos
dc.subject.lembDominio C-terminal antimicrobiano
dc.subject.lembCepas
dc.subject.proposalCandida albicansspa
dc.subject.proposalPéptido antimicrobianospa
dc.subject.proposalCurvas de crecimientospa
dc.subject.proposalCatelicidina humana LL37spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2018
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2018