Mostrar el registro sencillo del ítem

dc.contributor.advisorRomero Calderón, Ibeth Cristina
dc.contributor.authorRodríguez Vásquez, Laura Ximena
dc.date.accessioned2022-03-08T20:42:42Z
dc.date.available2022-03-08T20:42:42Z
dc.date.issued2021-09-03
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/4788
dc.description.abstractPseudomonas aeruginosa es un microorganismo que presenta resistencia en los entornos clínicos. Son diferentes los mecanismos por los cuales logra evadir los antimicrobianos, uno de ellos son los sistemas de dos componentes. PhoQ y PhoP son un sistema de dos componentes conocido principalmente en Salmonella sp., es por esto que su caracterización in silico en Pseudomonas aeruginosa aporta al conocimiento sobre la identificación de nuevos marcadores moleculares asociados a virulencia y resistencia. En el presente proyecto se caracterizaron los genes PhoQ-PhoP de dos cepas MDR de P. aeruginosa haciendo uso de herramientas bioinformáticas con el objetivo de buscar mutaciones frente a las cepas sensibles a medicamentos, realizar un análisis filogenético con ortólogos y determinar características de las proteínas codificadas por estos genes. Se logró observar una mutación de cambio de sentido en PhoQ con un cambio de tirosina por fenilalanina, un distanciamiento filogenético de P. aeruginosa en comparación a ortólogos de estos genes por las diferencias funcionales y ambientales de las distintas especies y se obtuvo modelos tridimensionales de buena calidad lo cual permite realizar la búsqueda de compuestos que tengan afinidad de unión con estas proteínas, paso principal en el diseño racional de nuevos medicamentos. Estos resultados pueden ser usados a futuro para el desarrollo de posibles blancos terapéuticos o para la inhibición selectiva de P. aeruginosa en alternativas terapéuticasspa
dc.description.tableofcontentsResumen 9 Introducción 11 1. Objetivos 13 1.1 Objetivo general 13 1.2 Objetivos específicos 13 2. Antecedentes 14 3. Bases legales 16 4. Marco teórico 17 4.1 Características generales de Pseudomonas aeruginosa 17 4.2 Enfermedades o infecciones ocasionadas por Pseudomonas aeruginosa 17 4.2.1 Modo de transmisión 18 4.2.2 Tratamiento y resistencia en P. aeruginosa 18 4.2.3 Alternativas terapéuticas 19 4.3 Patogenicidad y virulencia de Pseudomonas aeruginosa 20 4.3.1 Genes de virulencia y resistencia en Pseudomonas aeruginosa 21 4.4 Función biológica de PhoP y PhoQ en microorganismos 21 4.5 Importancia de los estudios in silico en resistencia bacteriana 24 5. Metodología 25 6. Resultados 29 7. Discusión 47 8. Conclusiones 51 Referencias bibliográficas 51eng
dc.format.extent68p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarcaeng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleCaracterización in silico de los genes de virulencia PhoP -PhoQ en cepas de Pseudomonas aeruginosa fenotipo multidrogo-resistente (MDR)spa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogota D.Cspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesYagui M. Resistencia antimicrobiana: nuevo enfoque y oportunidad. Rev. perú. med. exp. 2018; 35: 1726-4634. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-463420180001000 02spa
dc.relation.referencesQuiñones D. Resistencia antimicrobiana: evolución y perspectivas actuales ante el enfoque "Una salud". Rev Cubana Med Trop. 2017; 69 (3): 1561-3054. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602017000300009spa
dc.relation.referencesPonce S, Arredondo R, López Y. La resistencia a los antibióticos: Un grave problema global. Gac Med Mex. 2015;151:681-9. Disponible en: https://www.medigraphic.com/pdfs/gaceta/gm-2015/gm155r.pdfspa
dc.relation.referencesRuiz P., & Cantón R. Epidemiology of antibiotic resistance in Pseudomonas aeruginosa. Implications for empiric and definitive therapy. Rev Esp Quimioter. (2017). 30 (Suppl. 1): 8-12. Disponible en: https://seq.es/seq/0214-3429/30/suppl1/01ruiz.pdfspa
dc.relation.referencesTierney A & Rather P. Roles of two-component regulatory systems in antibiotic resistance. Future Microbiol. 2019; 14(6): 533–552. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6526388/spa
dc.relation.referencesYang B, Liu C, Pan X, Fu W, Fan Z, Jin Y, et al. Identification of Novel phoP-phoQ Regulated Genes that Contribute to Polymyxin B Tolerance in Pseudomonas aeruginosa. Microorganisms. 2021; 9(2): 344. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916210/spa
dc.relation.referencesBou G. Relación entre resistencia y virulencia en bacterias de interés clínico. Enferm Infecc Microbiol Clin. 2014; 32(1):1–3. Disponible en: https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28- pdf-S0213005X13003352spa
dc.relation.referencesOMS. Carga mundial de infecciones asociadas a la atención sanitaria [Internet]. Disponible en: https://www.who.int/gpsc/country_work/burden_hcai/es/ [Consultado el 15 de enero de 2020]spa
dc.relation.referencesBarchiesi J, Castelli M, Venanzio G, Colombo M, García E. The PhoP/PhoQ System and Its Role in Serratia marcescens Pathogenesis. J Bacteriol. 2012; 194(11): 2949–2961. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370626/spa
dc.relation.referencesInstituto Nacional de Salud. Infecciones asociadas a dispositivos [Internet].Disponible en: https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_Infecciones%20asociada s%20a%20dispositivos.pdf#search=IAAS [Consultado el 15 de enero de 2020]spa
dc.relation.referencesBoyd S, Vasudevan A, Moore L, Brewer C, Gilchrist M, Costelloe C, et al. Validating a prediction tool to determine the risk of nosocomial multidrug-resistant Gram-negative bacilli infection in critically ill patients: A retrospective case–control study. J Glob Antimicrob Resist. 2020; 22: 826-831. Disponible en: https://www.sciencedirect.com/science/article/pii/S2213716520301855?via%3Dihubspa
dc.relation.referencesAngelettia S, Cella E, Prosperi M, Spoto S, Fogolari M, Florio L, et al. Multi-drug resistant Pseudomonas aeruginosa nosocomial strains: Molecular epidemiology and evolution. Microb. Pathog. 2018; 123: 233-241. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0882401018306557?via%3Dih ubspa
dc.relation.referencesTummler B. Emerging therapies against infections with Pseudomonas aeruginosa. F1000 Faculty Rev. 2019; 8: 1371. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688719/spa
dc.relation.referencesGarbajosa P, Cantón R. Epidemiology of antibiotic resistance in Pseudomonas aeruginosa. Implications for empiric and definitive therapy. Rev Esp Quimioter. 2017; 30: 8-12. Disponible en: https://seq.es/seq/0214-3429/30/suppl1/01ruiz.pdfspa
dc.relation.referencesWieland K, Chhatwal P, Vonberg R. Nosocomial outbreaks caused by Acinetobacter baumannii and Pseudomonas aeruginosa: Results of a systematic review. Am. J. Infect. Control. 2018; 46: 643-648. Disponible en: https://pubmed.ncbi.nlm.nih.gov/29398072/spa
dc.relation.referencesINS. Infecciones asociadas a dispositivos en UCI. [Internet]. Disponible en: https://www.ins.gov.co/buscador-eventos/Informesdeevento/INFECCIONES%20ASO CIADAS%20A%20DISPOSITIVOS%20PE%20II%202021.pdf#search=pseudomonas %20infeccionesspa
dc.relation.references7. Morales J, Andrade J. Risk factors associated with mortality and antibiotic susceptibility patterns in Pseudomonas aeruginosa bacteremia. Bol. Med. Hosp. Infant. 2006; 63 (5): 1665-1146. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-114620060005000 02#:~:text=La%20mortalidad%20asociada%20a%20bacteriemias,incidencia%20de% 20infecciones%20por%20Pspa
dc.relation.referencesValderrama S, González PF, Caro MA, Ardila N, Ariza B, Gil F, et al. Factores de riesgo para bacteriemia por Pseudomonas aeruginosa resistente a carbapenémicos adquirida en un hospital colombiano. Biomédica. 2016; 36 (1): 69-77. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/2784spa
dc.relation.referencesSaavedra A, Duarte C, Nilse M, Realpe M. Caracterización de aislamientos de Pseudomonas aeruginosa productores de carbapenemasas de siete departamentos de Colombia. Biomédica 2014; 34 (1):217-23. Disponible en: https://revistabiomedica.org/index.php/biomedica/article/view/1685spa
dc.relation.referencesHérnandez A, Yague G, Vázquez E, Simon M, Moreno L, Canteras M. Infecciones nosocomiales por Pseudomonas aeruginosa multiresistente incluido carbapenémicos: factores predictivos y pronósticos. Estudio prospectivo 2016-2017. Rev Esp Quimioter. 2018 Apr; 31(2): 123–130. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159385/spa
dc.relation.referencesDerakhshanab S, Hosseinzadehc A. Resistant Pseudomonas aeruginosa carrying virulence genes in hospitalized patients with urinary tract infection from Sanandaj, west of Iran. Gene rep. 2020; 20: 100675. Disponible en: https://doi.org/10.1016/j.genrep.2020.100675spa
dc.relation.referencesHorcajada J, Montero M, Oliver A, Sorlí L, Luque S, Gómez S, et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019; 32(4): e00031-19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730496/spa
dc.relation.references. Recio R, Mancheño M, Viedma E, Villa J, Orellana M, Lora J, et al. Predictors of Mortality in Bloodstream Infections Caused by Pseudomonas aeruginosa and Impact of Antimicrobial Resistance and Bacterial Virulence. Antimicrob Agents Chemother. 2020; 64(2): e01759-19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985728/spa
dc.relation.referencesSharma A, Sangwan N, Negi V, Kohli P, Khurana J, Lakshmi D, et al. Pan-genome dynamics of Pseudomonas gene complements enriched across hexachlorocyclohexane dumpsite. BMC Genomics. 2015; 16(1): 313. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405911/spa
dc.relation.referencesOrellana M, Pachecho N, Costa J, Mendez K, Miossec M, Meneses C. In-Depth Genomic and Phenotypic Characterization of the Antarctic Psychrotolerant Strain Pseudomonas sp. MPC6 Reveals Unique Metabolic Features, Plasticity, and Biotechnological Potential. Front Microbiol. 2019; 10: 1154. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6543543/spa
dc.relation.referencesLee C, Klockgether J, Fischer S, Trcek J, Tummler B, Romling R. Why? – Successful Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiol Rev. 2020 Nov; 44(6): 740–762. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685784/spa
dc.relation.referencesParkins M, Somayaji R, Waters V. Epidemiology, Biology, and Impact of Clonal Pseudomonas aeruginosa Infections in Cystic Fibrosis. Clin Microbiol Rev. 2018; 31(4): e00019-1. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6148191/spa
dc.relation.referencesSchwartz D, Cantor C. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 1984;37(1): 67-75. Disponible en: https://pubmed.ncbi.nlm.nih.gov/6373014/spa
dc.relation.referencesJolley K, Bray J, Maiden M. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018; 3: 124. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6192448/spa
dc.relation.referencesYan Y, Yao X, Li H, Zhou Z, Huang W, Stratton C, et al. A Novel Pseudomonas aeruginosa Strain with an oprD Mutation in Relation to a Nosocomial Respiratory Infection Outbreak in an Intensive Care Unit. J Clin Microbiol. 2014; 52(12): 4388–4390. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4313324/spa
dc.relation.referencesXu Y, Zheng X, Zeng W, Chen T, Liao W, Lin J, et al. Mechanisms of Heteroresistance and Resistance to Imipenem in Pseudomonas aeruginosa. Infect Drug Resist. 2020; 13: 1419–1428. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7234976/spa
dc.relation.referencesYoon E, Kim D, Lee H, Sun H, Hwan J, Soo Y, et al. Mortality dynamics of Pseudomonas aeruginosa bloodstream infections and the influence of defective OprD on mortality: prospective observational study. J Antimicrob Chemother. 2019; 74(9): 2774-2783. Disponible en: https://pubmed.ncbi.nlm.nih.gov/31236593/spa
dc.relation.referencesBalasubramanian D, Kumari H, Mathee K. Pseudomonas aeruginosa AmpR: an acute–chronic switch regulator. Pathog Dis. 2015 Mar; 73(2): 1–14. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4542883/spa
dc.relation.referencesKhatua B, Van J, Pronab B, Chaudhry R, Mandal C. Sialylation of Outer Membrane Porin Protein D: A Mechanistic Basis of Antibiotic Uptake in Pseudomonas aeruginosa. Mol Cell Proteomics. 2014; 13(6): 1412–1428. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047463/spa
dc.relation.referencesTsutsumi Y, Tomita H, Tanimoto K. Identification of Novel Genes Responsible for Overexpression of ampC in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother. 2013; 57(12): 5987–5993. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837884/spa
dc.relation.referencesHo-Fung C, Krahn T, Gilmour C, Mullen E, Poole K. AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa. Microbiologyopen. 2015 Feb; 4(1): 121–135. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4335980/spa
dc.relation.referencesPuja H, Bolard A, Nogués A, Plésiat, Jeannot K. The Efflux Pump MexXY/OprM Contributes to the Tolerance and Acquired Resistance of Pseudomonas aeruginosa to Colistin. Antimicrob Agents Chemother. 2020 Apr; 64(4): e02033-19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179290/spa
dc.relation.referencesMasuda N, Sakagawa E, Ohya S, Gotoh N, Tsujimoto H, Nishino T. Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2000 Dec; 44(12): 3322–3327. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC90200/spa
dc.relation.referencesPoole K, Ho-Fung C, Gilmour C, Hao Y, Lam J. Polymyxin Susceptibility in Pseudomonas aeruginosa Linked to the MexXY-OprM Multidrug Efflux System. Antimicrob Agents Chemother. 2015 Dec; 59(12): 7276–7289. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4649153/spa
dc.relation.referencesNouri R, Ahangarzadeh M, Hasani A, Aghazadeh M, Asgharzadeh M. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Braz J Microbiol. 2016; 47(4): 925–930. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052375/spa
dc.relation.referencesFeng X, Zhang Z, Li X, Song Y, Kang J, Yin D, et al. Mutations in gyrB play an important role in ciprofloxacin-resistant Pseudomonas aeruginosa. Infect Drug Resist. 2019; 12: 261–272. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6371945/spa
dc.relation.referencesBruchmann S, Dötsch A, Nouri B, Chaberny I, Häussler S. Quantitative Contributions of Target Alteration and Decreased Drug Accumulation to Pseudomonas aeruginosa Fluoroquinolone Resistance. Antimicrob Agents Chemother. 2013 Mar; 57(3): 1361–1368. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3591863/spa
dc.relation.referencesColombia. Resolución Nº 008430 de 1993 por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud. (Boletín oficial del Estado, 4 de octubre de 1993).spa
dc.relation.referencesVélez E. Bacilos Gram negativos no fermentadores de glucosa. En: Orjuela O, Gallejo CR. Bacteriología Aplicada. Manual de Procedimientos. Colombia: Kimpres; 2014. p 101-102.spa
dc.relation.references5. Burguillos L. Resistencia antibiótica en Pseudomonas aeruginosa: Situación epidemiológica en España y alternativas de tratamiento. [Pregrado]. Universidad Complutense; 2018. Disponible en: http://147.96.70.122/Web/TFG/TFG/Memoria/LAURA%20BRAVO-BURGUILLOS%20 ROS.pdfspa
dc.relation.referencesPaz V, Mangwani S, Martínez A, Álvarez D, Solano S, Vázquez R. Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Rev. chil. infectol. 2019; 36 (2): 0716-1018. Disponible en: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-1018201900020018 0spa
dc.relation.references. Ruíz L. Pseudomonas aeruginosa: aportación al conocimiento de su estructura y al de los mecanismos que contribuyen a su resistencia a los antimicrobianos. [Doctoral].Universidad de Barcelona; 2017. Disponible en: https://www.tdx.cat/bitstream/handle/10803/2521/LRM_TESIS.pdfspa
dc.relation.referencesGhadam P, Akhlaghi F, Abdi A. One-step purification and characterization of alginate lyase from a clinical Pseudomonas aeruginosa with destructive activity on bacterial biofilm. Iran J Basic Med Sci. 2017; 20(5): 467–473. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478773/spa
dc.relation.referencesMoradali M, Ghods S, Rehm B. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Front Cell Infect Microbiol. 2017; 7: 39. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5310132/spa
dc.relation.referencesBedard E, Prevost M, Deziel E. Pseudomonas aeruginosa in premise plumbing of large buildings. Microbiologyopen. 2016; 5(6): 937–956. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5221438/spa
dc.relation.referencesConceição J, Pereira P, Damasceno F, Ribeiro C, Oliveira S, Tranches A. Ozone against Pseudomonas aeruginosa biofilms in contact lenses storage cases. Rev Inst Med Trop Sao Paulo. 2019; 61: e23. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481249/spa
dc.relation.referencesPachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019; 6(2): 109–119. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6545445/spa
dc.relation.references. Liu T, Zhang Y, Wan Q. Pseudomonas aeruginosa bacteremia among liver transplant recipients. Infect Drug Resist. 2018; 11: 2345–2356. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6247952/spa
dc.relation.referencesTran M, Wibowo D, Rehm B. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020; 21(22): 8671. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7698413/spa
dc.relation.referencesMalhotra S, Hayes D, Wozniak D. Cystic Fibrosis and Pseudomonas aeruginosa: the Host-Microbe Interface. Clin Microbiol Rev. 2019; 32(3): e00138-18. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589863/spa
dc.relation.referencesMui T, Kretzschmar M, Bertrand X, Bootsma M. Tracking Pseudomonas aeruginosa transmissions due to environmental contamination after discharge in ICUs using mathematical models. PLoS Comput Biol. 2019; 15(8): e1006697. Disponible en: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006697spa
dc.relation.referencesBachta K, Allen J, Cheung B, Chiu C, Hauser A. Systemic Infection Facilitates Transmission of Pseudomonas aeruginosa. BioRxi. 2019. Disponible en: https://www.biorxiv.org/content/10.1101/765339v1.fullspa
dc.relation.referencesMensa J, Barberán J, Soriano A, Llinares P, Marco F, Cantón R, et al. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: Guidelines by the Spanish Society of Chemotherapy. Rev Esp Quimioter. 2018; 31(1): 78–100. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6159363/spa
dc.relation.referencesRaman G, Avendano E, Chan J, Merchant S, Puzniak L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2018; 7: 79. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6032536/spa
dc.relation.referencesBehzadi P, Barath Z, Gajdacs M. It’s Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel). 2021; 10(1): 42. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7823828/spa
dc.relation.referencesCarmine A, Gomes A, Melo F, Ardisson D, Castagna A, Lunkes V. Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animal. BMC Microbiol. 2019; 19: 134. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6580649/spa
dc.relation.referencesPfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol. 2018; 9: 281. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5882822/spa
dc.relation.referencesRuffin M, Brochiero E. Repair Process Impairment by Pseudomonas aeruginosa in Epithelial Tissues: Major Features and Potential Therapeutic Avenues. Front Cell Infect Microbiol. 2019; 9: 182. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6554286/spa
dc.relation.referencesElmouaden C, Laglaoui A, Ennanei L, Bakkali M, Abid M. Virulence genes and antibiotic resistance of Pseudomonas aeruginosa isolated from patients in the Northwestern of Morocco. J. Infect. Dev. Ctries. 2019; 13(10):892-898. Disponible en: https://jidc.org/index.php/journal/article/view/32084019spa
dc.relation.referencesPejčića M, Stojanović-Radića Z, Genčić M, Dimitrijevića M, Radulovićb N. Anti-virulence potential of basil and sage essential oils: Inhibition of biofilm formation, motility and pyocyanin production of Pseudomonas aeruginosa isolates. Food Chem. Toxicol. 2020; 141:111431. Disponible en: https://doi.org/10.1016/j.fct.2020.111431spa
dc.relation.referencesSawa T, Shimizu M, Moriyama K, Wiener J. Association between Pseudomonas aeruginosa type III secretion, antibiotic resistance, and clinical outcome: a review. Crit Care. 2014; 18(6): 668. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331484/spa
dc.relation.referencesWang C, Liu X, Wang J, Zhou J, Cui Z, Hui L. Design and characterization of a polyamine derivative inhibiting the expression of type III secretion system in Pseudomonas aeruginosa. Sci Rep. 2016; 6: 30949. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4971474/spa
dc.relation.referencesUllah W, Qasim M, Rahman H, Jie Y, Muhammad N. Beta-lactamase-producing Pseudomonas aeruginosa: Phenotypic characteristics and molecular identification of virulence genes. Chin Med J. 2017; 80 (3): 173-177. Disponible en: https://doi.org/10.1016/j.jcma.2016.08.011spa
dc.relation.references. Schinner S, Engelhardt F, Preusse M, Gesine J, Tomasch J, Haussler S. Genetic determinants of Pseudomonas aeruginosa fitness during biofilm growth. Biofilm. 2020; 2: 100023. Disponible en: https://doi.org/10.1016/j.bioflm.2020.100023spa
dc.relation.referencesFrancis V, Stevenson E, Porter S. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2017; 364(11): fnx104. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812489/spa
dc.relation.referencesGroisman E. The Pleiotropic Two-Component Regulatory System PhoP-PhoQ. mBio. 2001; 1835-1842. Disponible en: https://jb.asm.org/content/183/6/1835spa
dc.relation.referencesSamantha A, Vrielink A. Lipid A Phosphoethanolamine Transferase: Regulation, Structure and Immune Response. J. Mol. Biol. 2020; 432 (18): 5184-5196. Disponible en: https://www.sciencedirect.com/science/article/pii/S002228362030320Xspa
dc.relation.references3. Raheem M, Xue M, Ahmad H, Ahmad M, Tipu M, Afzal G, et al. Adaptation to host specific bacterial pathogens drive rapid evolution of novel PhoP/PhoQ regulation pathway modulating the virulence. Microb. Pathog. 2020; 141: 103997. Disponible en: https://doi.org/10.1016/j.micpath.2020.103997spa
dc.relation.referencesCao L, Wang J, Sun L, Kong Z, Wu Q, Wang Z, et al. Transcriptional analysis reveals the relativity of acid tolerance and antimicrobial peptide resistance of Salmonella. Microb. Pathog. 2019; 136: 103701. Disponible en: https://doi.org/10.1016/j.micpath.2019.103701spa
dc.relation.referencesTsai M, Liang Y, Chen C, Chiu C. Characterization of Salmonella resistance to bile during biofilm formation. J Microbiol Immunol Infect. 2020; 53 (4): 518-524. Disponible en: https://doi.org/10.1016/j.jmii.2019.06.003spa
dc.relation.referencesGunn J, Richards S. Recognition and Integration of Multiple Environmental Signals by the Bacterial Sensor Kinase PhoQ. Cell Host Microbe. 2007; 1 (3): 163-165. Disponible en: https://www.cell.com/fulltext/S1931-3128(07)00075-3spa
dc.relation.referencesProst L, Daley M, Sage V, Bader M, Moual H, Klevit R, et al. Activation of the Bacterial Sensor Kinase PhoQ by Acidic pH. Mol. cell. 2007; 26 (2): 165-174. Disponible en: https://www.sciencedirect.com/science/article/pii/S1097276507001530#:~:text=Suma ry,transcriptional%20program%20essential%20for%20virulence.&text=PhoQ%2 also%20binds%20and%20is,sensor%20domain%20to%20pH%205.5spa
dc.relation.referencesCarabajal M, Asquith C, Laitinen T, Tizzard G, Yim L, Rial A, et al. Quinazoline Based Antivirulence Compounds Selectively Target Salmonella PhoP/PhoQ Signal Transduction System. mBio. 2020; 64 (1): e01744-19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7187569/spa
dc.relation.referencesLiu L, Zheng S. Transcriptional regulation of Yersinia pestis biofilm formation. Microb. Pathog. 2019; 131: 212-217. Disponible en: https://doi.org/10.1016/j.micpath.2019.04.011spa
dc.relation.referencesErickson D, Russel C, Johnson K, Hileman T, Steward R. PhoP and OxyR transcriptional regulators contribute to Yersinia pestis virulence and survival within Galleria mellonella. Microb. Pathog. 2011; 51 (6): 389-395. Disponible en: https://doi.org/10.1016/j.micpath.2011.08.008spa
dc.relation.referencesBozue J, Mou S, Moody K, Cote C, Trevino S, Fritz D, Worsham P. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Microb. Pathog. 2011; 50 (6): 314-321. Disponible en: https://doi.org/10.1016/j.micpath.2011.02.005spa
dc.relation.referencesLin Z, Cai X, Chen M, Ye L, Wu Y, Wang X, et al. Virulence and Stress Responses of Shigella flexneri Regulated by PhoP/PhoQ. Front. Microbiol. 2018; 8:2689. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775216/spa
dc.relation.referencesNakka S, Qi M, Zhao Y. The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems. Microbiol. Res. 2010; 165 (8): 665-673. Disponible en: https://www.sciencedirect.com/science/article/pii/S0944501309001165?via%3Dihubspa
dc.relation.referencesSerra M. La resistencia microbiana en el contexto actual y la importancia del conocimiento y aplicación en la política antimicrobiana. Rev haban cienc méd. 2017; 16 (3): 1729-519. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729519X20170003 00011spa
dc.relation.referencesISGLOBAL. Los 4 frentes de batalla contra la resistencia a los antibióticos. [Internet]. Disponible en: https://www.isglobal.org/informe-la-batalla-contra-las-resistencias [Consultado el 30 de enero de 2020]spa
dc.relation.references. Pintilie L, Stefaniu A. In Silico Drug Design and Molecular Docking Studies of Some Quinolone Compound. Molecular Docking and Molecular Dynamics. 2019. Disponible en: https://www.intechopen.com/books/molecular-docking-and-molecular-dynamics/-em-i n-silico-em-drug-design-and-molecular-docking-studies-of-some-quinolone-compoun dspa
dc.relation.referencesJeukens J, Freschi J, Kukavica‐Ibrulj I, Emond J, Tucker N & Levesque R. Genomics of antibiotic‐resistance prediction in Pseudomonas aeruginosa. Ann N Y Acad Sci. 2019; 1435(1): 5–17. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379567/spa
dc.relation.referencesSoukarieh F, Vico E, Dubern J, Gomes J, Halliday N, Crespo M, et al. In Silico and in Vitro-Guided Identification of Inhibitors of Alkylquinolone-Dependent Quorum Sensing in Pseudomonas aeruginosa. Molecules. 2018; 23(2): 257. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017655/spa
dc.relation.referencesSolanki V, Tiwari M & Tiwari V. Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Sci Rep. 2019; 9: 5240. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437148/spa
dc.relation.referencesNational Center for Biotechnology Information (NCBI). Basic Local Alignment Search Tool (BLAST). Disponible en: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=B lastSearch&BLAST_SPEC=&LINK_LOC=blasttab&LAS T_PAGE=blastpspa
dc.relation.referencesMEGA. Disponible en: https://www.megasoftware.net/spa
dc.relation.referencesKhan S. Árboles filogenéticos. [Internet]. Khan Academy. 2016. [citado 20 de mayo del 2021]. Disponible en: https://es.khanacademy.org/science/high-schoolbiology/hs-evolution/hs-phylogeny/a/ phylogenetic-treesspa
dc.relation.referencesMartínez-Lage, A y González-Tizón, A. Aplicaciones de la bioinformática en la elaboración de filogenias moleculares. 2004. Fundación Alfredo Brañas. 53-81. Disponible en: https://www.udc.es/grupos/gibe/uploads/gibe/andres%20ana/filogenias.pdfspa
dc.relation.referencesNei M & Kumar S. Molecular Evolution and Phylogenetics. 1 ed. New York: Oxford University Press: 2000spa
dc.relation.referencesProtparam tool. Disponible en: https://web.expasy.org/protparam/spa
dc.relation.referencesPROSITE Database of protein domains, families and functional sites. Disponible en: https://prosite.expasy.org/spa
dc.relation.referencesSWISS-MODEL. Disponible en: https://swissmodel.expasy.org/spa
dc.relation.referencesPSIPRED. Disponible en: http://bioinf.cs.ucl.ac.uk/psipred/spa
dc.relation.referencesGOR IV. Disponible en: https://npsaprabi.ibcp.fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_gor4.htmlspa
dc.relation.referencesProtein Structure Analisis Web. Disponible en: https://prosa.services.came.sbg.ac.at/prosa.phpspa
dc.relation.referencesJochumsen N, Marvig R, Damkkiaer S, Lyngkli p R, Paulander W, Molin S, et al. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat. Commun. 2016; 7: 13002. Disponible en: https://www.nature.com/articles/ncomms13002spa
dc.relation.referencesBarrow K, Know D. Alterations in Two-Component Regulatory Systems of phoPQ and pmrAB Are Associated with Polymyxin B Resistance in Clinical Isolates of Pseudomonas aeruginosa. J. Clin. Microbiol. 2020; 53 (12). Disponible en: https://journals.asm.org/doi/10.1128/AAC.00893-09spa
dc.relation.referencesMeng L, Liu H, Lan T, Dong L, Hu H, Zhao S, et al. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated From Raw Milk Revealed by Whole Genome Sequencing. Front. Microbiol. 2020; 11:1005. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01005/fullspa
dc.relation.referencesGutu A, Sgambati N, Strasbourger P, Brannon M, Jacobs M, Haugen E, et al. Polymyxin Resistance of Pseudomonas aeruginosa phoQ Mutants Is Dependent on Additional Two-Component Regulatory Systems. J. Clin. Microbiol. 2013; 57 (5). Disponible en: https://journals.asm.org/doi/10.1128/aac.02353-12?permanently=truespa
dc.relation.referencesGooderham J, Hancock R. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiology Reviews. 2009; 33 (2): 279-294. Disponible en: https://academic.oup.com/femsre/article/33/2/279/588178spa
dc.relation.referencesOlaitan A, Morand S, Rolain J. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014; 5:643.Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2014.00643/fullspa
dc.relation.referencesMiller A, Brannon M, Stevens L, Krogh H, Selgrade S, Miller S, et al. PhoQ Mutations Promote Lipid A Modification and Polymyxin Resistance of Pseudomonas aeruginosa Found in Colistin-Treated Cystic Fibrosis Patients. Antimicrob Agents Chemother. 2011; 55(12): 5761–5769. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232818/spa
dc.relation.referencesMolina L, Udaondo Z, Duque E, Fernández M, Molina M, Roca A, et al. Antibiotic Resistance Determinants in a Pseudomonas putida Strain Isolated from a Hospital. PloS one. 2014. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0081604spa
dc.relation.referencesMacfarlane E, Kwasnicka A, Ochs M, Hancock R. PhoP–PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol. Microbiol. 2002; 34 (2): 305-316. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.1999.01600.xspa
dc.relation.referencesFrancis V, Stevenson E, Porter S. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2017; 364(11): fnx104. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812489/spa
dc.relation.referencesMcPhee K, Lewenza S, Hanckock R. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 2003; 50 (1): 205-217. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1046/j.1365-2958.2003.03673.xspa
dc.relation.referencesMcPhee J, Bains M, Winsor G, Lewenza S, Brazas M, Brinkman F, et al. Contribution of the PhoP-PhoQ and PmrA-PmrB Two-Component Regulatory Systems to Mg2+-Induced Gene Regulation in Pseudomonas aeruginosa. J Bacteriol. 2006; 188(11): 3995–4006. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482896/spa
dc.relation.referencesOlaitan A, Morand S, Rolain J. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014; 5:643. Disponible en: https://www.frontiersin.org/articles/10.3389/fmicb.2014.00643/fullspa
dc.relation.referencesProst L, Daley M, Bader M, Klevit Miller S. The PhoQ Histidine Kinases of Salmonella and Pseudomonas spp. are Structurally and Functionally Different: Evidence that pH and Antimicrobial Peptide Sensing Contribute to Mammalian Pathogenesis. Mol Microbiol. 2008; 69(2): 503–519. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2555970/spa
dc.relation.referencesGunn J. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 2008; 16 (6): 284-290. Disponible en: https://sci-hub.se/https://doi.org/10.1016/j.tim.2008.03.007spa
dc.relation.referencesGellatly S. Regulation of the PhoQ-PhoP two-component system in Pseudomonas aeruginosa and its role in virulence. [Doctoral]. University of Victoria; 2012spa
dc.relation.referencesBrinkman F, MacFarlane E, Warrener P, Hancock R. Evolutionary Relationships among Virulence-Associated Histidine Kinases. Infect Immun. 2001; 69(8): 5207–5211. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98623/spa
dc.relation.referencesMolnar K, Bonomi M, Pellarin R, Clinthorne G, Gonzalez G, Goldberg S, et al. Cys-scanning Disulfide crosslinking and Bayesian modeling probe the transmembrane signaling mechanism of the histidine kinase, PhoQ. Structure. 2014; 22(9): 1239–1251. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322757/spa
dc.relation.referencesLesley J, Waldburger C. Comparison of the Pseudomonas aeruginosa andEscherichia coli PhoQ Sensor Domains. J. Biol. Chem. 2001; 276 (33): P30827- 30833. Disponible en: https://www.jbc.org/article/S0021-9258(20)80227-/fulltext#fig1spa
dc.relation.referencesMatamouros S, Hager K, Miller S. HAMP Domain Rotation and Tilting Movements Associated with Signal Transduction in the PhoQ Sensor Kinase. mBio. 2015; 6(3): e00616. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447245/spa
dc.relation.referencesStock A, Robinson V, Goudreau P. Two-Component Signal Transduction. Biochemistry. 2000; 69:183-215. Disponible en: https://www.annualreviews.org/doi/10.1146/annurev.biochem.69.1.183spa
dc.relation.referencesVelikova N, Fulle S, Manso A, Mechkarska M, Finn P, Conlon J, et al. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens. Sci Rep. 2016; 6: 26085. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865847/spa
dc.relation.referencesViarengo G. Identificación y caracterización de compuestos antibacterianos a partir de productos naturales o semisintéticos. [Doctoral]. Universidad Nacional del Litoral; 2015spa
dc.relation.referencesCheung J, Hendrickson W. Sensor Domains of Two-Component Regulatory Systems. Curr Opin Microbiol. 2010; 13(2): 116–123. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3078554/spa
dc.relation.referencesAhmad A, Fadel F, Kreuzer C, Ba M, Pélissier G, Bornet O, et al. Structural and functional insights into the periplasmic detector domain of the GacS histidine kinase controlling biofilm formation in Pseudomonas aeruginosa. Sci Rep. 2017; 7: 11262. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595915/spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembPhoQ
dc.subject.lembMDR
dc.subject.lembsensibilidad
dc.subject.proposalPseudomonas aeruginosaspa
dc.subject.proposalSistema de dos componentesspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca