Mostrar el registro sencillo del ítem

dc.contributor.advisorRomero Calderón, Ibeth Cristina
dc.contributor.advisorSánchez, Ruth Mélida
dc.contributor.authorLeón Castro, Francy Rocío
dc.date.accessioned2021-09-23T20:15:40Z
dc.date.available2021-09-23T20:15:40Z
dc.date.issued2021-03-12
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/2866
dc.description.abstractAcinetobacter baumannii se ha convertido en uno de los microorganismos fuertemente implicados en las infecciones asociadas a la atención en salud (IAAS) y representa una amenaza para la salud pública debido a las altas tasas de resistencia y mortalidad que genera. La búsqueda de nuevos blancos terapéuticos para desarrollar terapias alternativas es indispensable para garantizar el control de las enfermedades asociadas a este patógeno. En este sentido, en el presente trabajo se hizo una caracterización in silico de la enzima cisteína sintasa (CS) de A. baumannii, así como una identificación de compuestos con afinidad por la enzima mediante el uso de herramientas y bases de datos bioinformáticas de acceso libre. El estudio in silico demostró que A. baumannii posee dos genes que codifican para las proteínas CysM y CysK; las dos isoformas presentan todos los residuos y dominios importantes para la actividad catalítica y que han sido descritos en la familia de enzimas piridoxal 5′-fosfato (PLP) dependientes involucradas en la síntesis de cisteina por la via de novo a la cual pertenece CS. Mediante la herramienta I-TASSER se obtuvieron los modelos tridimensionales de las dos isoformas los cuales presentaron una topología correcta y alta calidad con puntajes típicamente encontrados en proteínas nativas. El acoplamiento molecular, las predicciones ADMET y los análisis de interacción permitieron identificar compuestos con alta afinidad por la isoforma CysK, dentro de lo que se destacan ZINC13643289, ZINC14996361, ZINC000002957581 y ZINC20353527 como candidatos para estudios in vitro y futuro desarrollo de una terapia selectiva para el tratamiento de infecciones asociadas a A. baumannii.spa
dc.description.abstractAcinetobacter baumannii has become one of the microorganisms strongly implicated in health care associated infections (HAI) and represents a threat to public health due to the high rates of resistance and mortality it generates. The search for new therapeutic targets to develop alternative therapies is essential to guarantee the control of diseases associated with this pathogen. In this sense, in the present work an in silico characterization of the enzyme cysteine synthase (CS) of A. baumannii was carried out, as well as an identification of compounds with affinity for the enzyme through the use of tools and bioinformatic databases of access free. The in silico study showed that A. baumannii has two genes that code for the CysM and CysK proteins; the two isoforms present all the important residues and domains for catalytic activity and which have been described in the family of dependent Pyridoxal 5′-Phosphate (PLP) enzymes involved in the synthesis of cysteine by the de novo route to which CS belongs. Using the I-TASSER tool, the three-dimensional models of the two isoforms were obtained, which presented a correct and high-quality topology with scores typically found in native proteins. Molecular coupling, ADMET predictions, and interaction analysis made it possible to identify compounds with high affinity for the CysK isoform, among which ZINC13643289, ZINC14996361, ZINC000002957581 and ZINC20353527 stand out as candidates for in vitro studies and future development of a selective therapy for the treatment of infections associated with A. baumannii.eng
dc.description.tableofcontentsRESUMEN 10 ABSTRACT 11 1.INTRODUCCIÓN 11 2. MARCO CONCEPTUAL Y GENERALIDADES 14 2.1 Acinetobacter baumannii, características generales 14 2.2 Enfermedades ocasionadas por A. baumannii 15 1.2.1 Patología de A. baumannii 16 2.3 Tratamiento para las enfermedades ocasionadas por A. baumannii 17 2.4 Resistencia a antibióticos en A. baumannii 18 2.5 Nuevos compuestos para el tratamiento de A. baumannii 21 2.6 Complejo cisteína sintasa (CS) (CysK- CysM) 23 2.6.1 Funciones de la cisteína en la supervivencia celular 24 2.6.2 Cisteína Sintasa un blanco de inhibición en patógenos humanos 26 2.7 Docking Molecular, análisis in silico de nuevos compuestos 27 3.PREGUNTA DE INVESTIGACIÓN - HIPÓTESIS 28 4.OBJETIVOS 29 4.1 Objetivo General 29 4.2 Objetivos específicos 29 5. MATERIALES Y MÉTODOS 29 5.1 Caracterización in silico de la cs en A. baumannii 30 5.1.1 Identificación de la secuencia nucleotídica del gen CS en las bases de datos bioinformáticas 30 5.1.2 Búsqueda de dominios y motivos característicos en la secuencia proteica de CS 30 5.1.3 Comparación de las secuencias proteicas de CS en A. baumannii y otras secuencias ortólogas 31 5.1.4 Predicción de estructuras secundaria y terciaria de las CS en A. baumannii 31 5.2 Docking molecular para cisteína sintasa (CysK) de A. baumannii 32 5.2.1 Preparación de la proteína CysK y los ligandos naturales para el docking molecular 32 5.2.2 Docking entre CysK, sustratos naturales y algunos compuestos control 33 5.2.3 Docking masivo entre CysK y compuestos con potencial unión a la enzima 33 5.3 Predicción in silico de las propiedades farmacocinéticas ADMET 34 5.4 Interacciones moleculares entre CysK y posibles ligandos (Proteína-Ligando) 34 6.RESULTADOS 35 6.1 Identificación del gen que codifica para CS en A. baumannii 35 6.2 Características generales de la enzima CS en Acinetobacter baumannii 40 6.3 Comparación de las secuencias proteicas de CS en A. baumannii y otras secuencias ortólogas 42 6.4 Predicción de estructuras secundaria y terciaria de las CS en A. baumannii 45 6.5 Docking molecular entre cisteína sintasa (CysK) de A. baumannii – posibles ligandos 50 6.6 Análisis de las propiedades farmacocinéticas ADMET en los compuestos con mejor energía de unión a CysK. 52 6.7 Interacciones moleculares entre cisteína sintasa (CysK) y ligandos con mejor energía de unión 56 7.DISCUSIÓN 58 8.CONCLUSIONES 60 9.PERSPECTIVAS 61 REFERENCIAS BIBLIOGRAFICAS 62 ANEXOS 74spa
dc.format.extent88p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleCaracterización de la enzima cisteína sintasa en Acinetobacter baumannii como posible blanco terapéutico mediante un análisis in silicospa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.researchgroupGenética y Biotecnología U.C.M.Cspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Microbiologíaspa
dc.description.researchareaSalud humanaspa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.Cspa
dc.publisher.programMaestría en Microbiologíaspa
dc.relation.referencesAlcántar-Curiel, M. D., Rosales-Reyes, R., Jarillo-Quijada, M. D., Gayosso-Vázquez, C., Fernández-Vázquez, J. L., Toledano-Tableros, J. E., Giono-Cerezo, S., Garza-Villafuerte, P., López-Huerta, A., Vences-Vences, D., Morfín-Otero, R., Rodríguez-Noriega, E., López-Álvarez, M. del R., Espinosa-Sotero, M. del C., & Santos-Preciado, J. I. (2019). Carbapenem-Resistant Acinetobacter baumannii in Three Tertiary Care Hospitals in Mexico: Virulence Profiles, Innate Immune Response and Clonal Dissemination. Frontiers in Microbiology, 10(September), 1-19. https://doi.org/10.3389/fmicb.2019.02116spa
dc.relation.referencesAsif, M., Alvi, I. A., & Ur Rehman, S. (2018). Insight into acinetobacter baumannii: Pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. Infection and Drug Resistance, 11, 1249-1260. https://doi.org/10.2147/IDR.S166750spa
dc.relation.referencesBenoni, R., Pertinhez, T. A., Spyrakis, F., Davalli, S., Pellegrino, S., Paredi, G., Pezzotti, A., Bettati, S., Campanini, B., & Mozzarelli, A. (2016). Structural insight into the interaction of O-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Letters, 590(7), 943-953. https://doi.org/10.1002/1873- 3468.12126spa
dc.relation.referencesBhattacharya, M., Hota, A., Kar, A., Sankar Chini, D., Chandra Malick, R., Chandra Patra, B., & Kumar Das, B. (2018). In silico structural and functional modelling of Antifreeze protein (AFP) sequences of Ocean pout (Zoarces americanus, Bloch & Schneider 1801). Journal of Genetic Engineering and Biotechnology, 16(2), 721-730. https://doi.org/10.1016/j.jgeb.2018.08.004spa
dc.relation.referencesBrunner, K., Steiner, E. M., Reshma, R. S., Sriram, D., Schnell, R., & Schneider, G. (2017). Profiling of in vitro activities of urea-based inhibitors against cysteine synthases from Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 27(19), 4582- 4587. https://doi.org/10.1016/j.bmcl.2017.08.039spa
dc.relation.referencesBurkhard, P., Rao, G. S. J., Hohenester, E., Schnackerz, K. D., Cook, P. F., & Jansonius, J. N. (1998). Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. Journal of Molecular Biology, 283(1), 121-133. https://doi.org/10.1006/jmbi.1998.2037spa
dc.relation.referencesChinthalapudi, K., Kumar, M., Kumar, S., Jain, S., Alam, N., & Gourinath, S. (2008). Crystal structure of native O-acetyl-serine sulfhydrylase from Entamoeba histolytica and its complex with cysteine: Structural evidence for cysteine binding and lack of interactions with serine acetyl transferase. Proteins: Structure, Function and Genetics, 72(4), 1222- 1232. https://doi.org/10.1002/prot.22013spa
dc.relation.referencesde la Fuente-Salcido, N. M., Villarreal-Prieto, J. M., Díaz León, M. Á., & García Pérez, A. P. (2015). Evaluación de la actividad de los agentes antimicrobianos ante el desafío de la resistencia bacteriana. Revista Mexicana de Ciencias Farmaceuticas, 46(2), 7-16.spa
dc.relation.referencesDietrich H. Nies, S. P. (2007). Molecular Microbiology of Heavy Metals. En Molecular Microbiology of Heavy Metals. https://doi.org/10.1007/978-3-540-69771-8spa
dc.relation.referencesDoi, Y., Murray, G. L., & Peleg, A. Y. (2015). Acinetobacter baumannii: Evolution of antimicrobial resistance-treatment options. Seminars in Respiratory and Critical Care Medicine, 36(1), 85-98. https://doi.org/10.1055/s-0034-1398388spa
dc.relation.referencesDucel, G. Fabry, J. Nicolle, L. Girard, R. Perraud, M. Prüss, A. Savey, a. (2009). Prevención de las infecciones nosocomiales. Who.int, 2, 70. https://doi.org/10.1590/S0036- 36341999000700012spa
dc.relation.referencesDurante-Mangoni, E., Signoriello, G., Andini, R., Mattei, A., De Cristoforo, M., Murino, P., Bassetti, M., Malacarne, P., Petrosillo, N., Galdieri, N., Mocavero, P., Corcione, A., Viscoli, C., Zarrilli, R., Gallo, C., & Utili, R. (2013). Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clinical Infectious Diseases, 57(3), 349-358. https://doi.org/10.1093/cid/cit253spa
dc.relation.referencesEze, E. C., Chenia, H. Y., & El Zowalaty, M. E. (2018). Acinetobacter baumannii biofilms: Effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infection and Drug Resistance, 11, 2277- 2299. https://doi.org/10.2147/IDR.S169894spa
dc.relation.referencesFranko, N., Grammatoglou, K., Campanini, B., Costantino, G., Jirgensons, A., & Mozzarelli, A. (2018). Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1343-1351. https://doi.org/10.1080/14756366.2018.1504040spa
dc.relation.referencesFrávega, J. S. T. exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H. in a C. manner, Álvarez, R., Díaz, F., Inostroza, O., Tejías, C., Rodas, P. I., Paredes-Sabja, D., Fuentes, J. A., Calderón, I. L., & Gil, F. (2016). Salmonella Typhimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner. Journal of Antimicrobial Chemotherapy, 71(12), 3409-3415. https://doi.org/10.1093/JAC/DKW311spa
dc.relation.referencesFyfe, P. K., Westrop, G. D., Ramos, T., Müller, S., Coombs, G. H., & Hunter, W. N. (2012). Structure of Leishmania major cysteine synthase. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 68(7), 738-743. https://doi.org/10.1107/S1744309112019124spa
dc.relation.referencesGuan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score-a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148-157. https://doi.org/10.1039/C8MD00472Bspa
dc.relation.referencesHaque, M., Sartelli, M., Mckimm, J., & Abu Bakar, M. (2018). Infection and Drug Resistance Dovepress Health care-associated infections-an overview. Infection and Drug Resistance, 11(1), 2321-2333. https://doi.org/10.2147/IDR.S177247spa
dc.relation.referencesHuang, B., Vetting, M. W., & Roderick, S. L. (2005). The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. Journal of Bacteriology, 187(9), 3201-3205. https://doi.org/10.1128/JB.187.9.3201-3205.2005spa
dc.relation.referencesHuma, T., Maryam, A., Rehman, S., Tahir, M., Haque, A., & Shaheen, B. (2014). Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom. Biomedical Informatics, 10(7).spa
dc.relation.referencesIrwin, J. J., & Shoichet, B. K. (2005). ZINC - A free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177-182. https://doi.org/10.1021/ci049714+spa
dc.relation.referencesIrwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A fre tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757-1768. https://doi.org/10.1021/ci3001277spa
dc.relation.referencesJawad, A., Hawkey, P. M., Heritage, J., & Snelling, A. M. (1994). Description of Leeds Acinetobacter Medium, a New Selective and Differential Medium for Isolation of Clinically Important Acinetobacter spp., and Comparison with Herellea Agar and Holton’s Agar. En JOURNAL OF CLINICAL MICROBIOLOGY.spa
dc.relation.referencesJean Kumar, V. U., Poyraz, Ö., Saxena, S., Schnell, R., Yogeeswari, P., Schneider, G., & Sriram, D. (2013). Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorganic and Medicinal Chemistry Letters, 23(5), 1182-1186. https://doi.org/10.1016/j.bmcl.2013.01.031spa
dc.relation.referencesJoshi, P., Gupta, A., & Gupta, V. (2019). Insights into multifaceted activities of CysK for therapeutic interventions. 3 Biotech, 9(2), 1-16. https://doi.org/10.1007/s13205-019-1572- 4spa
dc.relation.referencesKapoor, R. (2008). Acinetobacter infection. New England Journal of Medicine, 358(26), 2845- 2847. https://doi.org/10.1056/NEJMc080854spa
dc.relation.referencesKarlowsky, J. A., Hoban, D. J., Hacke, M. A., Lob, S. H., & Sahm, D. F. (2017). Antimicrobial susceptibility of gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Asia-Pacific countries: SMART 2013- 2015. Journal of Medical Microbiology, 66(1), 61-69. https://doi.org/10.1099/jmm.0.000421spa
dc.relation.referencesKhan, H. A., Baig, F. K., & Mehboob, R. (2017). Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pacific Journal of Tropical Biomedicine, 7(5), 478-482. https://doi.org/10.1016/j.apjtb.2017.01.019spa
dc.relation.referencesKim, S. W., Oh, M. H., Jun, S. H., Jeon, H., Kim, S. Il, Kim, K., Lee, Y. C., & Lee, J. C. (2016). Outer membrane Protein A plays a role in pathogenesis of Acinetobacter nosocomialis. Virulence, 7(4), 413-426. https://doi.org/10.1080/21505594.2016.1140298spa
dc.relation.referencesKlausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C. K., Sommer, M. O. A., Winther, O., Nielsen, M., Petersen, B., & Marcatili, P. (2019). NetSurfP- 2.0: Improved prediction of protein structural features by integreatd deep learning. Proteins: Structure, Function and Bioinformatics, 87(6), 520-527. https://doi.org/10.1002/prot.25674spa
dc.relation.referencesKohl, J. B., Mellis, A. T., & Schwarz, G. (2019). Homeostatic impact of sulfite and hydrogen sulfide on cysteine catabolism. British Journal of Pharmacology, 176(4), 554-570. https://doi.org/10.1111/bph.14464spa
dc.relation.referencesKwofie, S. K., Dankwa, B., Odame, E. A., Agamah, F. E., Doe, L. P. A., Teye, J., Agyapong, O., Miller, W. A., Mosi, L., & Wilson, M. D. (2018). In silico screening of isocitrate lyase for novel anti-buruli ulcer natural products originating from Africa. Molecules, 23(7). https://doi.org/10.3390/molecules23071550spa
dc.relation.referencesLee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 7(MAR). https://doi.org/10.3389/fcimb.2017.00055spa
dc.relation.referencesLee, J. S., Choi, C. H., Kim, J. W., & Lee, J. C. (2010). Acinetobacter baumannii outer membrane protein a induces dendritic cell death through mitochondrial targeting. Journal of Microbiology, 48(3), 387-392. https://doi.org/10.1007/s12275-010-0155-1spa
dc.relation.referencesLiang, J., Han, Q., Tan, Y., Ding, H., & Li, J. (2019). Current advances on structure-function relationships of pyridoxal 5’-phosphate-dependent enzymes. Frontiers in Molecular Biosciences, 6(MAR). https://doi.org/10.3389/fmolb.2019.00004spa
dc.relation.referencesLin, M.-F. (2014). Antimicrobial resistance in Acinetobacter baumannii : From bench to bedside . World Journal of Clinical Cases, 2(12), 787. https://doi.org/10.12998/wjcc.v2.i12.787spa
dc.relation.referencesLucidi, M., Runci, F., Rampioni, G., Frangipani, E., Leoni, L., & Visca, P. (2018). New shuttle vectors for gene cloning and expression in multidrug-resistant Acinetobacter species. Antimicrobial Agents and Chemotherapy, 62(4), 1-19. https://doi.org/10.1128/AAC.02480- 17spa
dc.relation.referencesMagalhães, J., Franko, N., Annunziato, G., Pieroni, M., Benoni, R., Nikitjuka, A., Mozzarelli, A., Bettati, S., Karawajczyk, A., Jirgensons, A., Campanini, B., & Costantino, G. (2019). Refining the structure−activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors of O-acetylserine sulfhydrylase isoforms. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 31-43. https://doi.org/10.1080/14756366.2018.1518959spa
dc.relation.referencesMazumder, M., & Gourinath, S. (2015). Structure-Based Design of Inhibitors of the Crucial Cysteine Biosynthetic Pathway Enzyme O-Acetyl Serine Sulfhydrylase. Current Topics in Medicinal Chemistry, 16(9), 948-959. https://doi.org/10.2174/1568026615666150825142422spa
dc.relation.referencesMonem, S., Furmanek-Blaszk, B., Łupkowska, A., Kuczyńska-Wiśnik, D., Stojowska- Swędrzyńska, K., & Laskowska, E. (2020). Mechanisms protecting acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics, and outside host environment. En International Journal of Molecular Sciences (Vol. 21, Número 15, pp. 1-30). MDPI AG. https://doi.org/10.3390/ijms21155498spa
dc.relation.referencesMorrissey, I., Olesky, M., Hawser, S., Lob, S. H., Karlowsky, J. A., Corey, G. R., Bassetti, M., & Fyfe, C. (2019). In Vitro Activity of Eravacycline against Gram-Negative Bacilli Isolated in Clinical Laboratories Worldwide from 2013 to 2017 . Antimicrobial Agents and Chemotherapy, 41(December), 1-29. https://doi.org/10.1128/aac.01699-19spa
dc.relation.referencesMulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10(APR). https://doi.org/10.3389/fmicb.2019.00539spa
dc.relation.referencesNasr, P. (2020). Genetics, epidemiology, and clinical manifestations of multidrug-resistant Acinetobacter baumannii. Journal of Hospital Infection, 104(1), 4-11. https://doi.org/10.1016/j.jhin.2019.09.021spa
dc.relation.referencesNeto, N. N. M., Maia, J., Queiroz, I. T., Zacarkim, M. R., Lins, M. G., Labeaud, D., Aronoff, D., & Medicine, F. (2018). In vitro Activity of Cefiderocol (S-649266), a Siderophore Cephalosporin, Against Enterobacteriaceae With Defined Extended-Spectrum Β- Lactamases and Carbapenemases. 5(Suppl 1), 250-251.spa
dc.relation.referencesNho, J. S., Jun, S. H., Oh, M. H., Park, T. I., Choi, C. W., Kim, S. Il, Choi, C. H., & Lee, J. C. (2015). Acinetobacter nosocomialis secretes outer membrane vesicles that induce epithelial cell death and host inflammatory responses. Microbial Pathogenesis, 81, 39-45. https://doi.org/10.1016/j.micpath.2015.03.012spa
dc.relation.referencesNowak, P., & Paluchowska, P. (2016). Acinetobacter baumannii: Biology and drug resistance — role of carbapenemases. Folia Histochemica et Cytobiologica, 54(2), 61-74. https://doi.org/10.5603/FHC.a2016.0009spa
dc.relation.referencesPagano, M., Martins, A. F., & Barth, A. L. (2016). Mobile genetic elements related to carbapenem resistance in Acinetobacter baumannii. Brazilian Journal of Microbiology, 47(4), 785-792. https://doi.org/10.1016/j.bjm.2016.06.005spa
dc.relation.referencesPercudani, R., & Peracchi, A. (2003). A genomic overview of pyridoxal-phosphate-dependent enzymes. EMBO Reports, 4(9), 850-854. https://doi.org/10.1038/sj.embor.embor914spa
dc.relation.referencesPinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18). https://doi.org/10.3390/ijms20184331spa
dc.relation.referencesRA, L., & MB, S. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778-2786.spa
dc.relation.referencesRada, J. (2016). An actual pathogen Acinetobacter. Revista de la Sociedad Boliviana de Pediatría, 55(1), 29-48. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S1024-06752016000100006spa
dc.relation.referencesRaj, I., Kumar, S., & Gourinath, S. (2012). The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences. Acta Crystallographica Section D: Biological Crystallography, 68(8), 909-919. https://doi.org/10.1107/S0907444912016459spa
dc.relation.referencesRamírez, D., & Caballero, J. (2018). Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules, 23(5), 1-17. https://doi.org/10.3390/molecules23051038spa
dc.relation.referencesRoberto Carlos Barletta Farías, Leonardo Javier Pérez Ponce, Gabriela Castro Vega, Misael Pujol Pérez, J., & Emilio Barletta del Castillo, Y. D. P. (2018). Multidrug-resistant Acinetobacter baumannii: a challange for current therapeutic. Revista cientifíca de ciencias médicas en Cienfuegos, 13.spa
dc.relation.referencesRodríguez, C. H., Nastro, M., & Famiglietti, A. (2018). Carbapenemases in Acinetobacter baumannii. Review of their dissemination in Latin America. Revista Argentina de Microbiologia, 50(3), 327-333. https://doi.org/10.1016/j.ram.2017.10.006spa
dc.relation.referencesRomero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of cysteine synthase and cystathionine β-synthase contributes to Leishmania braziliensis survival under oxidative stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770- 4781. https://doi.org/10.1128/AAC.04880-14spa
dc.relation.referencesRomero, I., Téllez, J., Yamanaka, L. E., Steindel, M., Romanha, A. J., & Grisard, E. C. (2014). Transsulfuration is an active pathway for cysteine biosynthesis in Trypanosoma rangeli. Parasites and Vectors, 7(1), 1-11. https://doi.org/10.1186/1756-3305-7-197spa
dc.relation.referencesRossi, E., Longo, F., Barbagallo, M., Peano, C., Consolandi, C., Pietrelli, A., Jaillon, S., Garlanda, C., & Landini, P. (2016). Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii. Future Microbiology, 11(3), 335-349. https://doi.org/10.2217/fmb.15.153spa
dc.relation.referencesRoy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725-738. https://doi.org/10.1038/nprot.2010.5spa
dc.relation.referencesSantajit, S., & Indrawattana, N. (2016). Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Research International, 2016. https://doi.org/10.1155/2016/2475067spa
dc.relation.referencesSchnell, R., & Schneider, G. (2010). Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochemical and Biophysical Research Communications, 396(1), 33-38. https://doi.org/10.1016/j.bbrc.2010.02.118spa
dc.relation.referencesSchweppe, D. K., Harding, C., Chavez, J. D., Wu, X., Ramage, E., Singh, P. K., Manoil, C., & Bruce, J. E. (2015). Host-Microbe Protein Interactions during Bacterial Infection. Chemistry and Biology, 22(11), 1521-1530. https://doi.org/10.1016/j.chembiol.2015.09.015spa
dc.relation.references., Kaushik, A., Pandya, V., Singh, R. P., Banerjee, S., Mittal, M., SSingh, A. K., Ekka, M. Kingh, V., & Kumaran, S. (2017). Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive- Allostery Mechanism. Biochemistry, 56(37), 5011-5025. https://doi.org/10.1021/acs.biochem.7b00500spa
dc.relation.referencesSingh, K., Ali, V., Pratap Singh, K., Gupta, P., Suman, S. S., Ghosh, A. K., Bimal, S., Pandey, K., & Das, P. (2017). z. Redox Biology, 12(March), 350-366. https://doi.org/10.1016/j.redox.2017.03.004spa
dc.relation.referencesSingh, K., Singh, K. P., Equbal, A., Suman, S. S., Zaidi, A., Garg, G., Pandey, K., Das, P., & Ali, V. (2016). Interaction between cysteine synthase and serine O-acetyltransferase proteins and their stage specific expression in Leishmania donovani. En Biochimie (Vol. 131). Elsevier Ltd. https://doi.org/10.1016/j.biochi.2016.09.004spa
dc.relation.referencesSingh, S., Sablok, G., Farmer, R., Singh, A. K., Gautam, B., & Kumar, S. (2013). Molecular dynamic simulation and inhibitor prediction of cysteine synthase structured model as a potential drug target for trichomoniasis. BioMed Research International, 2013. https://doi.org/10.1155/2013/390920spa
dc.relation.referencesSmolyakov, R., Borer, A., Riesenberg, K., Schlaeffer, F., Alkan, M., Porath, A., Rimar, D., Almog, Y., & Gilad, J. (2003). Nosocomial multi-drug resistant Acinetobacter baumannii bloodstream infection: Risk factors and outcome with ampicillin-sulbactam treatment. Journal of Hospital Infection, 54(1), 32-38. https://doi.org/10.1016/S0195-6701(03)00046- Xspa
dc.relation.referencesSpyrakis, F., Singh, R., Cozzini, P., Campanini, B., Salsi, E., Felici, P., Raboni, S., Benedetti, P., Cruciani, G., Kellogg, G. E., Cook, P. F., & Mozzarelli, A. (2013). Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0077558spa
dc.relation.referencesThirumal Kumar, D., Lavanya, P., George Priya Doss, C., Tayubi, I. A., Naveen Kumar, D. R., Francis Yesurajan, I., Siva, R., & Balaji, V. (2017). A Molecular Docking and Dynamics Approach to Screen Potent Inhibitors Against Fosfomycin Resistant Enzyme in Clinical Klebsiella pneumoniae. Journal of Cellular Biochemistry, 118(11), 4088-4094. https://doi.org/10.1002/jcb.26064spa
dc.relation.referencesTorres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key topics in molecular docking for drug design. International Journal of Molecular Sciences, 20(18), 1-29. https://doi.org/10.3390/ijms20184574spa
dc.relation.referencesViehman, J. A., Nguyen, M. H., & Doi, Y. (2014). Treatment options for carbapenem-resistant and extensively drug-resistant Acinetobacter baumannii infections. Drugs, 74(12), 1315- 1333. https://doi.org/10.1007/s40265-014-0267-8spa
dc.relation.referencesVolker F. Wendisch. (2007). Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering. https://books.google.com.co/books?id=0wJUFr1TphYC&pg=PA201&dq=cysk&hl=es- 419&sa=X&ved=0ahUKEwiv4Zyl19ToAhWOg- AKHZXwBYAQ6AEINTAB#v=onepage&q=cysk&f=falsespa
dc.relation.referencesWang, T., & Leyh, T. S. (2012). Three-stage assembly of the cysteine synthase complex from Escherichia coli. Journal of Biological Chemistry, 287(6), 4360-4367. https://doi.org/10.1074/jbc.M111.288423spa
dc.relation.referencesWang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., & Jiang, H. (2015). In silico ADME/T modelling for rational drug design. Quarterly Reviews of Biophysics, 48(4), 488-515. https://doi.org/10.1017/S0033583515000190spa
dc.relation.referencesWassermann, A. M., & Bajorath, J. (2011). BindingDB and ChEMBL: Online compound databases for drug discovery. Expert Opinion on Drug Discovery, 6(7), 683-687. https://doi.org/10.1517/17460441.2011.579100spa
dc.relation.referencesWHO. (2017). La OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos. En Who. https://www.who.int/es/news-room/detail/27-02-2017-who- publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-neededspa
dc.relation.referencesWiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(SUPPL.2), 407-410. https://doi.org/10.1093/nar/gkm290spa
dc.relation.referencesWilliams, R. A. M., Westrop, G. D., & Coombs, G. H. (2009). Two pathways for cysteine biosynthesis in Leishmania major. Biochemical Journal, 420(3), 451-462. https://doi.org/10.1042/BJ20082441spa
dc.relation.referencesYang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067-1069. https://doi.org/10.1093/bioinformatics/bty707spa
dc.relation.referencesYang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2014). The I-TASSER suite: Protein structure and function prediction. Nature Methods, 12(1), 7-8. https://doi.org/10.1038/nmeth.3213spa
dc.relation.referencesMagalhães J, Franko N, Annunziato G, Pieroni M, Benoni R, Nikitjuka A, et al. Refining the structure−activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors of O-acetylserine sulfhydrylase isoforms. J Enzyme Inhib Med Chem. 2019;34(1):31-43.spa
dc.relation.referencesSingh AK, Ekka MK, Kaushik A, Pandya V, Singh RP, Banerjee S, et al. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism. Biochemistry. 2017;56(37):5011-25.spa
dc.relation.referencesWang Y, Xing J, Xu Y, Zhou N, Peng J, Xiong Z, et al. In silico ADME/T modelling for rational drug design. Q Rev Biophys. 2015;48(4):488-515.spa
dc.relation.referencesFranko N, Grammatoglou K, Campanini B, Costantino G, Jirgensons A, Mozzarelli A. Inhibition of O-acetylserine sulfhydrylase by fluoroalanine derivatives. J Enzyme Inhib Med Chem [Internet]. 2018;33(1):1343-51. Disponible en: https://doi.org/10.1080/14756366.2018.1504040spa
dc.relation.referencesBrunner K, Steiner EM, Reshma RS, Sriram D, Schnell R, Schneider G. Profiling of in vitro activities of urea-based inhibitors against cysteine synthases from Mycobacterium tuberculosis. Bioorganic Med Chem Lett [Internet]. 2017;27(19):4582-7. Disponible en: http://dx.doi.org/10.1016/j.bmcl.2017.08.039spa
dc.relation.referencesJean Kumar VU, Poyraz Ö, Saxena S, Schnell R, Yogeeswari P, Schneider G, et al. Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserine sulfhydrylase (CysK1) using virtual high-throughput screening. Bioorganic Med Chem Lett [Internet]. 2013;23(5):1182-6. Disponible en: http://dx.doi.org/10.1016/j.bmcl.2013.01.031spa
dc.relation.referencesSpyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, et al. Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target. PLoS One. 2013;8(10).spa
dc.relation.referencesRoy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725-38.spa
dc.relation.referencesHuang B, Vetting MW, Roderick SL. The active site of O-acetylserine sulfhydrylase is the anchor point for bienzyme complex formation with serine acetyltransferase. J Bacteriol. 2005;187(9):3201-5.spa
dc.relation.referencesSchnell R, Schneider G. Structural enzymology of sulphur metabolism in Mycobacterium tuberculosis. Biochem Biophys Res Commun [Internet]. 2010;396(1):33-8. Disponible en: http://dx.doi.org/10.1016/j.bbrc.2010.02.118spa
dc.relation.referencesWilliams RAM, Westrop GD, Coombs GH. Two pathways for cysteine biosynthesis in Leishmania major. Biochem J. 2009;420(3):451-62.spa
dc.relation.referencesRaj I, Kumar S, Gourinath S. The narrow active-site cleft of O-acetylserine sulfhydrylase from Leishmania donovani allows complex formation with serine acetyltransferases with a range of C-terminal sequences. Acta Crystallogr Sect D Biol Crystallogr. 2012;68(8):909- 19.spa
dc.relation.referencesBenoni R, Pertinhez TA, Spyrakis F, Davalli S, Pellegrino S, Paredi G, et al. Structural insight into the interaction of O-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Lett. 2016;590(7):943-53.spa
dc.relation.referencesFarfan N, Molina K. Caracterización molecular y bioquímica de la enzima Cisteína Sintasa en la bacteria Pseudomonas aeruginosa mediante análisis in silico, como posible blanco terapéutico en este patógeno. 2020 trabajo Fin de Grado no publicado.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembAnálisis in Silico
dc.subject.lembMicroorganismos
dc.subject.lembSalud pública
dc.subject.lembPatógeno
dc.subject.proposalAcinetobacter baumanniispa
dc.subject.proposalCisteína Sintasaspa
dc.subject.proposalIAASspa
dc.subject.proposalResistenciaspa
dc.subject.proposalMortalidadspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021