Mostrar el registro sencillo del ítem

dc.contributor.advisorCamacho Kurmen, Judith Elena
dc.contributor.authorCaicedo Pineda, Viviana
dc.date.accessioned2024-05-14T21:13:56Z
dc.date.available2024-05-14T21:13:56Z
dc.date.issued2023-03
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/6835
dc.description.abstractEl aumento de la contaminación ha llevado a que en los ecosistemas acuáticos generen un desequilibrio bioquímico y biológico ocasionando pérdida de especies locales y migratorias, en especial en los humedales y los remanentes de estos, los vallados, que se encuentran localizados en zonas urbanas y/o rurales con constante ingreso de contaminantes. Por lo cual, la recuperación de estos ecosistemas, está enfocado en reducir compuestos nitrogenados que se relacionan con el aumento de eutrofización, a través del uso de microrganismos nativos, como las microalgas, aprovechando su metabolismo para reducir las concentraciones de amonio, nitrito y nitrato. Los objetivos de este trabajo fueron diseñar un biofiltro con capacidad de bioabsorción de compuestos nitrogenados utilizando microalgas libres y microencapsuladas, aisladas de cuerpos de agua de vallados así como determinar la capacidad del biofiltro diseñado para la bioabsorción de estos compuestos. El vallado utilizado presentó una concentración de Amonio (N-NH₄⁺) de 2,5 mg/l y de Nitrato (NO3-) de 2,2 mg/l, con un pH de 7. La microalga aislada pertenece al género Chlamydomonas sp. Esta microalga usa fuentes inorgánicas de nitrógeno para su crecimiento, lo cual permite aplicarla para biotratar aguas residuales con altos contenidos de compuestos nitrogenados. Se diseñaron los biofiltros utilizando 8,44 x 106 células/ ml de la microalga (μmax 0,077/día). Se observó que los biofiltros diseñados con la microalga bajo las condiciones trabajadas incrementaron el NH₄⁺ y NO3- presente, por lo que se necesita más investigación para optimizar los biofiltros y la eliminación de estos compuestos en el agua de los vallados.spa
dc.description.abstractThe increase in pollution has led aquatic ecosystems to generate a biochemical and biological imbalance, causing losses of local and migratory species, especially in wetlands and their remnants, the ditches, which are located in urban areas and/or rural with constant entry of contaminants. Therefore, the recovery of these ecosystems is focused on reducing nitrogenous compounds that are related to the increase in eutrophication, through the use of native microorganisms, such as microalgae, taking advantage of their metabolism to reduce ammonium, nitrite and nitrate concentrations. The objectives of this work are to design a biofilter with the capacity to remove nitrogenous compounds using free and microencapsulated microalgae, isolated from water bodies arising from ditches, as well as determine the capacity of the biofilter designed for the removal of these compounds. The sample taken from the stagnant water has an ammonium (N-NH₄⁺) concentration of 2.5 mg/l and nitrate (NO3-) of 2.2 mg/l, with a pH of 7. The isolated microalgae belongs to the genus Chlamydomonas sp. This microalga uses inorganic sources of nitrogen for its growth, which allows it to be used as biotreatment wastewater with high content of nitrogenous compounds. Biofilters were designed using 8,44 x 106 cells/ ml microalgae (μmax 0,077/day). It was observed that the biofilter designed with the microalga under the worked conditions increased the NH₄⁺ and NO3- present, therefore more research is needed to optimize the biofilters and the elimination of these compounds from the ditch.eng
dc.description.tableofcontentsContenido 1. Introducción1 1.1 Planteamiento del problema 2 1.2 Justificación 3 2. Marco conceptual y generalidades 6 2.1 Marco conceptual y generalidades6 2.1.1 Ecosistemas acuáticos cuerpos de agua6 2.1.2 Contaminación de aguas 7 2.1.3 Eutrofización 7 2.1.4 Ciclo del nitrógeno y asimilación del NO2- NO3- y NH4+ 9 2.1.5 Chlamydomonas sp 11 2.1.6 Producción a gran escala-microalgas en fotobiorreactor 13 2.1.7 Métodos para la microencapsulación 15 2.1.8 Biofiltración16 3. Objetivos18 3.1 Objetivo general 18 3.2 Objetivos específicos 18 4. Diseño metodológico 19 4.1 Fase 1 Caracterización de las microalgas presentes en muestras colectadas de cuerpos de agua de vallados. 20 4.1.1 Caracterización físicoquímica de las aguas provenientes de vallados 20 4.1.2 Caracterización de las microalgas nativas20 4.1.3 Producción de biomasa de la microalga nativa en el biorreactor biostat a plus 22 4.1.4 Generación de las curvas de crecimiento 23 4.1.5 Determinación de los parámetros cinéticos de crecimiento23 4.1.6 Determinación de los cambios morfológicos celulares 23 4.1.7 Determinación de clorofila 23 4.2 Fase 2. Diseño del biofiltro con las microalgas libres y microencapsuladas aisladas de cuerpos de agua en vallados. 24 4.2.1 Microencapsulación de microalgas 24 4.2.2 Preparación del macrocápsulas 24 4.2.3 Caracterización de las macrocápsulas 25 4.2.4 Diseño del biofiltro 26 4.3 fase 3. Determinación de la capacidad del biofiltro diseñado con microalgas libres e inmovilizadas para bioabsorción de compuestos nitrogenados 26 4.3.1 Porcentaje de bioabsorción de N-NH4+ y N-NO327 4.3.2 Diseño experimental y análisis estadístico 27 5. Resultados y análisis 28 5.1 Caracterización fisicoquímica de las muestras del vallado 28 5.2 Caracterización y crecimiento de la cepa aislada del vallado30 5.2.1 Identificación molecular31 5.2.2 Producción de biomasa del alga nativa en el biorreactor biosat a plus 34 5.3 Diseño del biofiltro37 5.3.1 Microencapsulación 37 5.4 Valores de N-NH₄⁺ y NO3- después del tratamiento 46 6. Conclusiones 52 7. Recomendaciones 54 8. Referencias 56 9. Anexos 62spa
dc.format.extent82p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos reservados - Universidad Colegio Mayor de Cundinamarca, 2024spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleDiseño de un biofiltro para compuestos nitrogenados utilizando Chlamydomonas sp. procedentes de vallados de Mosquera- Cundinamarcaspa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.corporatenameUniversidad Colegio Mayor de Cundinamarcaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Microbiologíaspa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.C., Colombiaspa
dc.publisher.programMaestría en Microbiologíaspa
dc.relation.referencesVillabona González SL, Benjumea-Hoyos CA, Gutiérrez-Monsalve JA, López-Muñoz MT, González EJ. Variables fisicoquímicas y biológicas de mayor influencia en el estado trófico de cinco embalses andinos colombianos. Rev la Acad Colomb Ciencias Exactas, Físicas y Nat. 2020;44(171).spa
dc.relation.referencesAlori ET, Gabasawa AI, Elenwo CE, Agbeyegbe OO. Bioremediation techniques as affected by limiting factors in soil environment. Front Soil Sci. 2022;2.spa
dc.relation.referencesRoldán-Pérez G, Ramírez-Restrepo JJ. Fundamentos de limnología neotropical. Vol. 2, Editorial Universidad de Antioquia. 2008.spa
dc.relation.referencesGupta S, Pawar SB, Pandey RA. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Vol. 687, Science of the Total Environment. 2019.spa
dc.relation.referencesMallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. BioMetals. 2002;15(4).spa
dc.relation.referencesHameed MS a, Ebrahim OH, Suef B. Biotechnological potential uses of immobilized algae. Int J Agric & Biol. 2007;9(1).spa
dc.relation.referencesCárdenas Calvachi GL, Sánchez Ortiz IA. Nitrógeno en aguas residuales: orígenes, efectos y mecanismos de remoción para preservar el ambiente y la salud pública. Univ y Salud. 2013;15(1).spa
dc.relation.referencesRoyal G, Finlayson M. Perspectiva Mundial Sobre los Humedales: Estado de los humedales del mundo y de los servicios que prestan a las personas 2018. Conveción Ramsar sobre los Humed. 2018;spa
dc.relation.referencesO’Nei WB, Maurer M, Polanía O. Contaminacion industrial en Colombia. FEDESARROLLO; 1994. p. 151–75.spa
dc.relation.referencesInstituto Humboldt, Investigación de Recursos Biológicos. Instituto Humboldt, Humedales Interiores de Colombia: Bases Técnicas para su Conservación y Uso Sostenible . 1999;spa
dc.relation.referencesGil-Izquierdo A, Pedreño MA, Montoro-García S, Tárraga-Martínez M, Iglesias P, Ferreres F, et al. A sustainable approach by using microalgae to minimize the eutrophication process of Mar Menor lagoon. Sci Total Environ. 2021;758.spa
dc.relation.referencesBernal R, Arias M, Domínguez M, Durán R, Valdés M, Sardiñas A. Bacterias como herramientas potenciales en el mejoramiento de humedales artificiales para el tratamiento de aguas. Rev CENIC Ciencias Biológicas. 2010;41(0253–5688).spa
dc.relation.referencesNagarajan D, Lee DJ, Chen CY, Chang JS. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Vol. 302, Bioresource Technology. 2020.spa
dc.relation.referencesHernández-Pérez A, Labbé JI. Microalgas, cultivo y beneficios. Vol. 49, Revista de Biologia Marina y Oceanografia. 2014.spa
dc.relation.referencesde-Bashan LE, Bashan Y. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresour Technol. 2010;101(6).spa
dc.relation.referencesINECOL instituto de ecología México. Los humedales, sus funciones y su papel en el almacenamiento de carbono atmosférico.spa
dc.relation.referencesUNIVERSIDAD NACIONAL DE COLOMBIA. REVISIÓN PLAN BASICO ORDENAMIENTO TERRITORIAL MUNICIPIO DE MOSQUERA CUNDINAMARCA . Facultad de Artes. 2012.spa
dc.relation.referencesGuadarrama , Rosendo, Kido J, Roldán , Gustavo, Salas M. Contaminación del agua. Revista de Ciencias Ambientales y Recursos Naturales . Rev Ciencias Ambient y Recur Nat . 2015 Sep;2:1–10.spa
dc.relation.referencesRoldán G. Bioindicación de la calidad del agua en Colombia: propuesta para el uso del método BMWP Col. Bioindicación de la calidad del agua en Colombia: propuesta para el uso del método BMWP Col. 2003.spa
dc.relation.referencesDe Miguel-Fernández C, Vázquez-Taset YM. ORIGEN DE LOS NITRATOS (NO3) Y NITRITOS (NO2) Y SU INFLUENCIA EN LA POTABILIDAD DE LAS AGUAS SUBTERRÁNEAS. Minería y Geol. 2006;22(3).spa
dc.relation.referencesDu H, Chen Z, Mao G, Chen L, Crittenden J, Li RYM, et al. Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach. Ecol Indic. 2019;102.spa
dc.relation.referencesministerio de agricultura. Decreto 1594 de 1984. Ley 9 1979 - Ley 2811 1974. 1984;1984(Junio 26).spa
dc.relation.referencesMoreno-Vivián C, Cabello P, Martínez-Luque M, Blasco R, Castillo F. Prokaryotic nitrate reduction: Molecular properties and functional distinction among bacterial nitrate reductases. Vol. 181, Journal of Bacteriology. 1999.spa
dc.relation.referencesChen H, Wang Q. Microalgae-based nitrogen bioremediation. Vol. 46, Algal Research. 2020.spa
dc.relation.referencesSanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E. Understanding nitrate assimilation and its regulation in microalgae. Vol. 6, Frontiers in Plant Science. 2015.spa
dc.relation.referencesSoler-Jofra A, Pérez J, van Loosdrecht MCM. Hydroxylamine and the nitrogen cycle: A review. Vol. 190, Water Research. 2021.spa
dc.relation.referencesMcDonald AE, Ivanov AG, Bode R, Maxwell DP, Rodermel SR, Hüner NPA. Flexibility in photosynthetic electron transport: The physiological role of plastoquinol terminal oxidase (PTOX). Vol. 1807, Biochimica et Biophysica Acta - Bioenergetics. 2011.spa
dc.relation.referencesHarris EH. The Chlamydomonas Sourcebook Volume1: Introduction to Chlamydomonas and Its Laboratory Use. Vol. 53, Journal of Chemical Information and Modeling. 2013.spa
dc.relation.referencesTakeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. Vol. 12, Biotechnology for Biofuels. 2019.spa
dc.relation.referencesMorando-Grijalva CA, Vázquez-Larios AL, Alcántara-Hernández RJ, Ortega-Clemente LA, Robledo-Narváez PN. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation. Environ Sci Pollut Res. 2020;27(23).spa
dc.relation.referencesBellinger EG, Sigee DC. Freshwater Algae: Identification and Use as Bioindicators. Freshwater Algae: Identification and Use as Bioindicators. 2010.spa
dc.relation.referencesPröschold T, Darienko T, Krienitz L, Coleman AW. Chlamydomonas schloesseri sp. nov. (Chlamydophyceae, Chlorophyta) revealed by morphology, autolysin cross experiments, and multiple gene analyses. Phytotaxa. 2018;362(1).spa
dc.relation.referencesBux F, Chisti Y. Algae biotechnology. Products and processes. Green Energy Technol. 2016;(March).spa
dc.relation.referencesHuang Q, Jiang F, Wang L, Yang C. Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering. 2017;3(3).spa
dc.relation.referencesQin L, Gao M, Zhang M, Feng L, Liu Q, Zhang G. Application of encapsulated algae into MBR for high-ammonia nitrogen wastewater treatment and biofouling control. Water Res. 2020;187.spa
dc.relation.referencesLebeau T, Robert JM. Biotechnology of immobilized micro algae: a culture technique for the future? Algal Cult Analog Bloom Appl. 2006;2(January 2006).spa
dc.relation.referencesRazak SBA, Sharip Z. The potential of phycoremediation in controlling eutrophication in tropical lake and reservoir: A review. Vol. 180, Desalination and Water Treatment. 2020.spa
dc.relation.referencesKumar SD, Santhanam P, Park MS, Kim MK. Development and application of a novel immobilized marine microalgae biofilter system for the treatment of shrimp culture effluent. J Water Process Eng. 2016;13.spa
dc.relation.referencesEcological and Genetic Implications of Aquaculture Activities. Ecological and Genetic Implications of Aquaculture Activities. 2007.spa
dc.relation.referencesPersson F, Långmark J, Heinicke G, Hedberg T, Tobiason J, Stenström TA, et al. Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water. Water Res. 2005;39(16).spa
dc.relation.referencesYoucai Z, Ziyang L. Leachate Pollution Control Technology at Sanitary Landfill. In: Pollution Control and Resource Recovery. 2017.spa
dc.relation.referencesKirisits MJ, Emelko MB, Pinto AJ. Applying biotechnology for drinking water biofiltration: advancing science and practice. Vol. 57, Current Opinion in Biotechnology. 2019.spa
dc.relation.referencesClaydon LS. Rigour in quantitative research. Vol. 29, Nursing standard (Royal College of Nursing (Great Britain) : 1987). 2015.spa
dc.relation.referencesMohajan HK. Quantitative Research: A Successful Investigation in Natural and Social Sciences. J Econ Dev Environ People. 2020;9(4).spa
dc.relation.referencesGalarza CR. Los alcances de una investigación. CienciAmérica. 2020;9.spa
dc.relation.referencesAPHA. American Public Health Association (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC. Stand Methods Exam Water Waste Water. 2005;spa
dc.relation.referencesMontenegro Ruiz LC. Aproximación al tratamiento de aguas residuales del lavado del café con las microalgas Parachlorella kessreli y Desmodesmus armatus. Rev Mutis. 2021 Dec;11:32–43.spa
dc.relation.referencesÁvila Peltroche JGJ. Remoción de nitratos y fosfatos por cepas nativas de Chlorella sp. (Chlorellaceae) y Chlamydomonas sp. (Chlamydomonadaceae) libres e inmovilizadas en aguas residuales municipales. Arnaldoa. 2018;25(2).spa
dc.relation.referencesOluwole OR, Tobin CM, Banjo TT, Efunwoye OO, Awoyemi SO. The use of immobilized microalgal bead concentrations in the removal of ammonium nitrogen from synthetic wastewater. Niger J Biotechnol. 2019;36(1).spa
dc.relation.referencesKamaruddin MA, Yuso MS, Aziz HA. Preparation and characterization of alginate beads by drop weight. Int J Technol. 2014;5(2).spa
dc.relation.referencesPosadas E, García-Encina PA, Domínguez A, Díaz I, Becares E, Blanco S, et al. Enclosed tubular and open algal-bacterial biofilm photobioreactors for carbon and nutrient removal from domestic wastewater. Ecol Eng. 2014;67.spa
dc.relation.referencesLee K, Lee CG. Nitrogen removal from wastewater by microalgae without consuming organic carbon sources. J Microbiol Biotechnol. 2002;12(6).spa
dc.relation.referencesGao Y, Yu J, Song Y, Zhu G, Paerl HW, Qin B. Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu, China. Environ Sci Pollut Res. 2019;26(7).spa
dc.relation.referencesRadu G, Racoviteanu G. Removing ammonium from water intended for human consumption. A review of existing technologies. In: IOP Conference Series: Earth and Environmental Science. 2021.spa
dc.relation.referencesJeon SM, Kim JH, Kim T, Park A, Ko AR, Ju SJ, et al. Morphological, molecular, and biochemical characterization of monounsaturated fatty acids-rich chlamydomonas sp. Kiost-1 isolated from Korea. J Microbiol Biotechnol. 2015;25(5).spa
dc.relation.referencesXie P, Ho SH, Xiao QY, Xu XJ, Zhao L, Zhou X, et al. Revealing the role of nitrate on sulfide removal coupled with bioenergy production in Chlamydomonas sp. Tai-03: Metabolic pathways and mechanisms. J Hazard Mater. 2020;399.spa
dc.relation.referencesYulistyorini A, Camargo-Valero MA. Microalgae Growth and Phosphorus Uptake of Chlamydomonas Reinhardtii 11/32C under Different Inorganic Nitrogen Sources. Int J Integr Eng. 2020;12(9).spa
dc.relation.referencesRuiz-Marin A, Canedo-Lopez Y, Campos-Garcia S del C, Sabido-Perez MY, Zavala-Loria J del C. Biodegradation of wastewater pollutants by activated sludge coimmobilized with scenedesmus obliquus. Agrociencia. 2013;47(5).spa
dc.relation.referencesSalbitani G, Carfagna S. Ammonium utilization in microalgae: A sustainable method for wastewater treatment. Vol. 13, Sustainability (Switzerland). 2021.spa
dc.relation.referencesTaj Khanzada Z. Growing Fresh Water Microalgae in High Ammonium Landfill Leachate. Am J Mech Appl. 2018;6(2).spa
dc.relation.referencesVirtanen O, Valev D, Kruse O, Wobbe L, Tyystjärvi E. Photoinhibition and continuous growth of the wild-type and a high-light tolerant strain of chlamydomonas reinhardtii. Photosynthetica. 2019;57(2).spa
dc.relation.referencesBonente G, Pippa S, Castellano S, Bassi R, Ballottari M. Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem. 2012;287(8).spa
dc.relation.referencesSoo CL, Chen CA, Bojo O, Hii YS. Feasibility of Marine Microalgae Immobilization in Alginate Bead for Marine Water Treatment: Bead Stability, Cell Growth, and Ammonia Removal. Int J Polym Sci. 2017;2017.spa
dc.relation.referencesde Jesus GC, Gaspar Bastos R, Altenhofen da Silva M. Production and characterization of alginate beads for growth of immobilized Desmodesmus subspicatus and its potential to remove potassium, carbon and nitrogen from sugarcane vinasse. Biocatal Agric Biotechnol. 2019;22.spa
dc.relation.referencesBanerjee S, Tiwade PB, Sambhav K, Banerjee C, Bhaumik SK. Effect of alginate concentration in wastewater nutrient removal using alginate-immobilized microalgae beads: Uptake kinetics and adsorption studies. Biochem Eng J. 2019;149.spa
dc.relation.referencesSanz-Luque E, Ocaña-Calahorro F, Llamas A, Galvan A, Fernandez E. Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii. J Exp Bot. 2013;64(11).spa
dc.relation.referencesShen Y, Qiu S, Chen Z, Zhang Y, Trent J, Ge S. Free ammonia is the primary stress factor rather than total ammonium to Chlorella sorokiniana in simulated sludge fermentation liquor. Chem Eng J. 2020;397.spa
dc.relation.referencesHong M, Ma Z, Wang X, Shen Y, Mo Z, Wu M, et al. Effects of light intensity and ammonium stress on photosynthesis in Sargassum fusiforme seedlings. Chemosphere. 2021;273.spa
dc.relation.referencesGonçalves AL, Pires JCM, Simões M. A review on the use of microalgal consortia for wastewater treatment. Vol. 24, Algal Research. 2017.spa
dc.relation.referencesRoy D, Hassan K, Boopathy R. Effect of carbon to nitrogen (C:N) ratio on nitrogen removal from shrimp production waste water using sequencing batch reactor. J Ind Microbiol Biotechnol. 2010;37(10).spa
dc.relation.referencesVergara C, Muñoz R, Campos JL, Seeger M, Jeison D. Influence of light intensity on bacterial nitrifying activity in algal-bacterial photobioreactors and its implications for microalgae-based wastewater treatment. Int Biodeterior Biodegrad. 2016;114.spa
dc.relation.referencesSu F, Li Z, Li Y, Xu L, Li Y, Li S, et al. Removal of total nitrogen and phosphorus using single or combinations of aquatic plants. Int J Environ Res Public Health. 2019;16(23).spa
dc.relation.referencesGarbayo I, León R, Vigara J, Vílchez C. Inhibition of nitrate consumption by nitrite in entrapped Chlamydomonas reinhardtii cells. Bioresour Technol. 2002;81(3).spa
dc.relation.referencesGarbayo I, León R, Vílchez C. Diffusion characteristics of nitrate and glycerol in alginate. Colloids Surfaces B Biointerfaces. 2002;25(1).spa
dc.relation.referencesBloom AJ. Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen. Photosynth Res. 2015;123(2).spa
dc.relation.referencesInokuchi R, Kuma KI, Miyata T, Okada M. Nitrogen-assimilating enzymes in land plants and algae: Phylogenic and physiological perspectives. Vol. 116, Physiologia Plantarum. 2002.spa
dc.relation.referencesHagemann M, Bauwe H. Photorespiration and the potential to improve photosynthesis. Vol. 35, Current Opinion in Chemical Biology. 2016.spa
dc.relation.referencesGarbayo I, Vigara AJ, Conchon V, Dos Santos VAPM, Vílchez C. Nitrate consumption alterations induced by alginate-entrapment of Chlamydomonas reinhardtii cells. Process Biochem. 2000;36(5).spa
dc.relation.referencesGonzález LE, Cañizares RO, Baena S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol. 1997;60(3).spa
dc.relation.referencesAkizuki S, Kishi M, Cuevas-Rodríguez G, Toda T. Effects of different light conditions on ammonium removal in a consortium of microalgae and partial nitrifying granules. Vol. 171, Water Research. 2020.spa
dc.relation.referencesKaplan D, Wilhelm R, Abeliovich A. Interdependent environmental factors controlling nitrification in waters. In: Water Science and Technology. 2000.spa
dc.relation.referencesAlmomani F, Al Ketife A, Judd S, Shurair M, Bhosale RR, Znad H, et al. Impact of CO 2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Sci Total Environ. 2019;662.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalEutrofizaciónspa
dc.subject.proposalValladosspa
dc.subject.proposalMicroalgasspa
dc.subject.proposalBiofiltraciónspa
dc.subject.proposalCompuestos nitrogenadosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos reservados - Universidad Colegio Mayor de Cundinamarca, 2024
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos reservados - Universidad Colegio Mayor de Cundinamarca, 2024