Mostrar el registro sencillo del ítem
Perspectiva del uso del género Bacillus spp como suplemento probiótico en pollos de engorde para modular la microbiota intestinal: Una revisión sistemática
dc.contributor.advisor | Sánchez Leal, Ligia Consuelo | |
dc.contributor.author | Zambrano Fuentes, Luis Guillermo | |
dc.date.accessioned | 2024-05-14T21:41:53Z | |
dc.date.available | 2024-05-14T21:41:53Z | |
dc.date.issued | 2023-03 | |
dc.identifier.uri | https://repositorio.unicolmayor.edu.co/handle/unicolmayor/6836 | |
dc.description.abstract | La importancia que ha tomado el conocimiento sobre la microbiota intestinal por el rol que ha demostrado tener en los procesos de salud y enfermedad de los seres vivos, ha llevado a plantear alternativas con nuevos microorganismos que mantengan en condiciones de equilibrio la función intestinal, con el fin de garantizar un buen estado de salud y en el caso de animales de cría para consumo humano, un desarrollo adecuado que represente aumento de ganancias económicas. El tracto gastrointestinal de los pollos de engorde alberga una diversidad de microorganismos que le permiten procesar los alimentos que consumen para obtener los nutrientes necesarios para su crecimiento. Cuando esa armonía se ve interrumpida por diversos factores como ambientales, la alimentación o la edad, es necesario iniciar una pronta recuperación para que el animal no se vea afectado. En los esfuerzos por buscar una alternativa acorde con los avances científicos, se han estado incorporando varios microorganismos con características de probióticos que puedan ser utilizados para la modulación de la microbiota intestinal. Existe una amplia variedad de microorganismos con actividad probiótica, entre las cuales se encuentran algunas especies del género Bacillus spp., que incluso ya se producen a nivel comercial. Como cualquier producto que se use en la cadena alimenticia en la que el consumidor final es el hombre, es necesario que se garantice su inocuidad al utilizarlo como probiótico, en particular considerando que algunas especies como B. subtilis y B. licheniformis se pueden comportar como microorganismos patógenos en humanos inmunocomprometidos. En esta revisión se abordan investigaciones en donde se ha encontrado al género Bacillus spp, utilizado como probiótico y se describen los beneficios que existen al ser consumido por los pollos y el efecto en los consumidores. Lo anterior, permitirá realizar un análisis de las perspectivas que tiene este género en la producción de probióticos. | spa |
dc.description.abstract | The importance that knowledge of the intestinal microbiota has taken on due to the role it has been shown to play in the health and disease processes of living beings, has led to the development of alternatives with new microorganisms that maintain intestinal function in balanced conditions, with the aim of guaranteeing a good state of health and, in the case of animals raised for human consumption, adequate development that represents an increase in economic profits. The gastrointestinal tract of broilers harbors a diversity of microorganisms that allow them to process the food they eat to obtain the nutrients necessary for growth. When this harmony is interrupted by various factors such as environmental factors, feed or age, it is necessary to initiate a prompt recovery so that the animal is not affected. In the efforts to find an alternative in accordance with scientific advances, several microorganisms with probiotic characteristics have been incorporated that can be used for the modulation of the intestinal microbiota. There is a wide variety of microorganisms with probiotic activity, among which are some species of the genus Bacillus spp. that are already commercially produced. Like any product used in the food chain in which the final consumer is the human being, it is necessary to guarantee its safety when used as a probiotic, particularly considering that some species such as B. subtilis and B. licheniformis can behave as pathogenic microorganisms in immunocompromised humans.This review addresses research where the genus Bacillus spp. has been found to be used as a probiotic and describes the benefits that exist when consumed by chickens and the effect on consumers. This will allow an analysis of the perspectives of this genus in the production of probiotics. In this review, research is addressed where the genus Bacillus spp. has been found to be used as a probiotic and describes the benefits that exist when consumed by chickens and the effect on consumers. This will allow an analysis of the different perspectives that this genus has in the production of probiotics. | eng |
dc.description.tableofcontents | Contenido Lista de figuras VI Lista de tablas VII Lista de abreviaturasVIII Resumen IX Abstract X 1. Introducción1 1.1 Justificación 4 2. Objetivos 7 2.1 Objetivo general 7 2.2 Objetivos específicos 7 3. Marco normativo 8 4. Marco de referencia 11 4.1 Probióticos, generalidades 11 4.1.1 Importancia de los probióticos 11 4.1.2 Criterios para que un microorganismo sea considerado probiótico 12 4.1.3 Mecanismo de acción de los probióticos 13 4.1.4 Microorganismos utilizados como probióticos 13 4.2 Industrias que producen probióticos 15 4.2.1 Efectos de los probióticos en el rendimiento productivo 15 4.2.2 Sectores donde se aplican los probióticos 16 4.3 Bacillus spp, características 16 4.3.1 Aplicación de Bacillus spp en diferentes sectores 18 4.3.2 Bacillus spp: patógeno o probiótico 19 4.4 Modulación de la microbiota intestinal 20 4.4.1 Tracto gastrointestinal de las aves - TGI 21 4.4.2 Pollos de engorde, generalidades 23 4.4.3 Enfermedades que afectan a los pollos de engorde 25 5. Diseño metodológico 26 5.1 Criterios de inclusión 26 5.2 Criterios de exclusión 27 6. Resultados y discusión 29 7. Conclusiones48 8. Recomendaciones 49 Referencias 50 | spa |
dc.format.extent | 71p. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Colegio Mayor de Cundinamarca | spa |
dc.rights | Derechos reservados - Universidad Colegio Mayor de Cundinamarca, 2024 | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.title | Perspectiva del uso del género Bacillus spp como suplemento probiótico en pollos de engorde para modular la microbiota intestinal: Una revisión sistemática | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.contributor.corporatename | Universidad Colegio Mayor de Cundinamarca | spa |
dc.description.degreelevel | Pregrado | spa |
dc.description.degreename | Magíster en Microbiología | spa |
dc.publisher.faculty | Facultad de Ciencias de la Salud | spa |
dc.publisher.place | Bogotá D.C., Colombia | spa |
dc.publisher.program | Maestría en Microbiología | spa |
dc.relation.references | R. FULLE. Probiotics in man and animals. J Appl Bacteriol. 1989;365–78. | spa |
dc.relation.references | Butel MJ. Probiotics, gut microbiota and health. Med Mal Infect [Internet]. 2014;44(1):1–8. Available from: http://dx.doi.org/10.1016/j.medmal.2013.10.002 | spa |
dc.relation.references | Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. 2019; Available from: https://doi.org/10.1093/advances/nmy063. | spa |
dc.relation.references | FAO E, OMS E. Probióticos en los alimentos Propiedades saludables y nutricionales y directrices para la evaluación. Estud FAO Aliment y Nutr [Internet]. 2006;85:52. Available from: file:///C:/Users/Acer/Documents/paty/homework1/PROBIOTICOS OPS 2006.pdf | spa |
dc.relation.references | Rama EN, Singh M. Regulations in Poultry Meat Processing. Food Saf Poult Meat Prod. 2019;293–301. | spa |
dc.relation.references | FENAVI. ¿Qué le espera a la avicultura en el 2022? Avicultores [Internet]. 2022;(287):1–52. Available from: https://fenavi.org/wp-content/uploads/2022/03/revista-287.pdf | spa |
dc.relation.references | Abd El-Hack ME, El-Saadony MT, Shafi ME, Qattan SYA, Batiha GE, Khafaga AF, et al. Probiotics in poultry feed: A comprehensive review. J Anim Physiol Anim Nutr (Berl). 2020 Nov 1;104(6):1835–50. | spa |
dc.relation.references | Shang Y, Kumar S, Oakley B, Kim WK. Chicken Gut Microbiota: Importance and Detection Technology. Chick Gut Microbiota Importance Detect Technol Front Vet Sci [Internet]. 2018;5:254. Available from: www.frontiersin.org | spa |
dc.relation.references | Jha R, Das R, Oak S, Mishra P. animals Probiotics (Direct-Fed Microbials) in Poultry Nutrition and Their Effects on Nutrient Utilization, Growth and Laying Performance, and Gut Health: A Systematic Review. [cited 2022 Jun 11]; Available from: www.mdpi.com/journal/animals | spa |
dc.relation.references | Zalewska M, Błażejewska A, Czapko A, Popowska M. Antibiotics and Antibiotic Resistance Genes in Animal Manure – Consequences of Its Application in Agriculture. Front Microbiol. 2021 Mar 29;12:640. | spa |
dc.relation.references | Ezema. Probiotics in animal production : A review. J Vet Med Anim Heal. 2013;5(11):308–16. | spa |
dc.relation.references | Sánchez Franco EC, Borja Bravo M, Ávila Ramos F. Hábitos de consumo de carne de pollo en Guanajuato, México. Verano la Cienc [Internet]. 2021;10:2–3. Available from: http://repositorio.ugto.mx/bitstream/20.500.12059/6371/1/Hábitos de consumo de carne de pollo en Guanajuato%2C México.pdf | spa |
dc.relation.references | Sector avícola colombiano evidencia un crecimiento del 2,9% al finalizar este 2022 - aviNews, la revista global de avicultura [Internet]. [cited 2023 Jun 5]. Available from: https://avinews.com/sector-avicola-colombiano-evidencia-un-crecimiento-del-29-al-finalizar-este-2022/ | spa |
dc.relation.references | Decreto 3518 de 2006 [Internet]. [cited 2023 Jan 28]. Available from: https://www.icbf.gov.co/cargues/avance/docs/resolucion_ica_1515_2015.htm | spa |
dc.relation.references | Resolución 1515 de 2015 [Internet]. [cited 2023 Jan 28]. Available from: https://www.icbf.gov.co/cargues/avance/docs/decreto_3518_2006.htm | spa |
dc.relation.references | Resolución 3652 de 2014 [Internet]. [cited 2023 Jan 28]. Available from: https://www.icbf.gov.co/cargues/avance/docs/resolucion_ica_3652_2014.htm | spa |
dc.relation.references | Resolución 1382 de 2013 [Internet]. [cited 2023 Jan 28]. Available from: https://www.icbf.gov.co/cargues/avance/docs/resolucion_minsaludps_1382_2013.htm | spa |
dc.relation.references | Resolución 1966 de 1984 - FENAVI - Federación Nacional de Avicultores de Colombia [Internet]. [cited 2023 Jan 28]. Available from: https://fenavi.org/documentos/resolucion-1966-de-1984/ | spa |
dc.relation.references | INSTITUTO COLOMBIANO AGROPECUARIO. Resolucion 061252 Del 2020. Vol. 0, Instituto Colombiano Agropecuario. 2020. p. 9–28. | spa |
dc.relation.references | Rural M de A y D, Ministerio de Ambiente V y DT, Ministerio de Comercio I y T, Público M de H y C, Socia M de P. CONPES 3468 POLÍTICA NACIONAL DE SANIDAD E INOCUIDAD PARA LA CADENA AVÍCOLA. 2007; | spa |
dc.relation.references | Barkhidarian B, Roldos L, Iskandar MM, Saedisomeolia A, Kubow S. Probiotic Supplementation and Micronutrient Status in Healthy Subjects: A Systematic Review of Clinical Trials. 2021; Available from: https://doi.org/10.3390/nu13093001 | spa |
dc.relation.references | Khosravi A, Mazmanian SK. Disruption of the gut microbiome as a risk factor for microbial infections. | spa |
dc.relation.references | Clavijo V, Morales T, Vives-Flores MJ, Reyes Muñoz A. The gut microbiota of chickens in a commercial farm treated with a Salmonella phage cocktail. 123AD; Available from: https://doi.org/10.1038/s41598-021-04679-6 | spa |
dc.relation.references | Castillo NA, de Moreno de LeBlanc A, Galdeano CM, Perdigón G. Probiotics: An alternative strategy for combating salmonellosis. Immune mechanisms involved. Food Res Int [Internet]. 2012;45(2):831–41. Available from: http://dx.doi.org/10.1016/j.foodres.2011.04.031 | spa |
dc.relation.references | Baldwin S, Hughes RJ, Hao Van T, Moore RJ, Stanley D. At-hatch administration of probiotic to chickens can introduce permanent and beneficial changes in gut microbiota Running Title: Early administration of probiotics. | spa |
dc.relation.references | Zhao Y, Zeng Y, Zeng D, Wang H, Sun N, Xin J, et al. Dietary Probiotic Supplementation Suppresses Subclinical Necrotic Enteritis in Broiler Chickens in a Microbiota-Dependent Manner. Front Immunol. 2022;13(March):1–18. | spa |
dc.relation.references | Fijan S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int J Environ Res Public Heal [Internet]. 2014;11:4745–67. Available from: www.mdpi.com/journal/ijerph | spa |
dc.relation.references | Nava J. Evaluación de Bacterias Ácido Lácticas Comercializadas como Probióticas. Univ los Andes Dep Biol. 2008;15–6. | spa |
dc.relation.references | Rondon L, Añez M, Salvatierra A, Meneses R, Heredia M. Guías De Manejo Clínico: Consenso De Probióticos [Internet]. Vol. 78, Archivos venezolanos de la puericultura y pedíatria. 2015. Available from: http://ve.scielo.org/pdf/avpp/v78n4/art06.pdf | spa |
dc.relation.references | Milián G., Pérez M., Bocourt R. Empleo de probióticos basado en Bacillus sp y de sus endosporas en la producción avícola. Rev Cuba Cienc Agrícola. 2008;42(2):117-122pp. | spa |
dc.relation.references | Amara AA, Shibl A. Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharm J [Internet]. 2015;23(2):107–14. Available from: http://dx.doi.org/10.1016/j.jsps.2013.07.001 | spa |
dc.relation.references | Abul M, Azad K, Sarker M, Li T, Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. 2018; Available from: https://doi.org/10.1155/2018/9478630 | spa |
dc.relation.references | Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy N. role of the normal gut microbiota. World J Gastroenterol [Internet]. 2015;21(29):8787–803. Available from: http://www.wjgnet.com/esps/HelpDesk:http://www.wjgnet.com/esps/helpdesk.aspx:8787-8803Availablefrom:URL:http://www.wjgnet.com/1007-9327/full/v21/i29/8787.htmDOI:http://dx.doi.org/10.3748/wjg.v21.i29.8787 | spa |
dc.relation.references | Gao P, Ma C, Sun Z, Wang L, Huang S, Su X, et al. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome. 2017;5(1):91. | spa |
dc.relation.references | Nour MA, El-Hindawy MM, Abou-Kassem DE, Ashour EA, Abd El-Hack ME, Mahgoub S, et al. Productive performance, fertility and hatchability, blood indices and gut microbial load in laying quails as affected by two types of probiotic bacteria. Saudi J Biol Sci [Internet]. 2021;28(11):6544–55. Available from: https://doi.org/10.1016/j.sjbs.2021.07.030 | spa |
dc.relation.references | Abdel-Moneim AME, Selim DA, Basuony HA, Sabic EM, Saleh AA, Ebeid TA. Effect of dietary supplementation of Bacillus subtilis spores on growth performance, oxidative status, and digestive enzyme activities in Japanese quail birds. Trop Anim Health Prod. 2020;52(2):671–80. | spa |
dc.relation.references | Claus D, Fritze D. DIETER CLAUS and DAGMAR FRITZE 2 1. 1989;5–6. | spa |
dc.relation.references | Maughan H, Van der Auwera G. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infect Genet Evol [Internet]. 2011;11(5):789–97. Available from: http://dx.doi.org/10.1016/j.meegid.2011.02.001 | spa |
dc.relation.references | Morelli L, Maris S, Rivera R, Rokana N, Panwar H, Elshaghabee FMF, et al. Bacillus As Potential Probiotics: Status, Concerns, and Future Perspectives. 2017; Available from: www.frontiersin.org | spa |
dc.relation.references | Realpe ME, Hernández CA, Agudelo CI. Species of the Bacillus strain: macroscopic and microscopic morphology. Biomedica. 2002;22(2):106–9. | spa |
dc.relation.references | Vos P De, Ledeganckstraat KL, B- G. Cohn 1872, 174. 2015. | spa |
dc.relation.references | Moscovici M, Tomulescu C, Băbeanu N. Antimicrobial compounds of the genus Bacillus: A review Bioprospection of Microorganisms View project Exopolysaccharides View project Roxana Stoica. 2019 [cited 2023 Mar 5]; Available from: https://www.researchgate.net/publication/338398534 | spa |
dc.relation.references | Joseph B, Dhas B, Hena V, Raj J, Joseph D. Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens Asian Pacific Journal of Tropical Biomedicine. Doc Head Asian Pac J Trop Biomed [Internet]. 2013 [cited 2023 Mar 5];3(12):942–6. Available from: www.elsevier.com/locate/apjtb | spa |
dc.relation.references | Abriouel H, Franz CMAP, Omar N Ben, Galvez A. Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev [Internet]. 2011 Jan 1 [cited 2023 Mar 5];35(1):201–32. Available from: https://academic.oup.com/femsre/article/35/1/201/513063 | spa |
dc.relation.references | Deleu M, Paquot M, Nylander T. Effect of Fengycin, a Lipopeptide Produced by Bacillus subtilis, on Model Biomembranes. Biophys J. 2008 Apr 1;94(7):2667–79. | spa |
dc.relation.references | Li Y, Héloir MC, Zhang X, Geissler M, Trouvelot S, Jacquens L, et al. Surfactin and fengycin contribute to the protection of a Bacillus subtilis strain against grape downy mildew by both direct effect and defence stimulation. Mol Plant Pathol [Internet]. 2019 Aug 1 [cited 2023 Mar 5];20(8):1037. Available from: /pmc/articles/PMC6640177/ | spa |
dc.relation.references | Alberto Moreira-Filho C, Reva O, Leonidas Chikindas M, Danilova I, Sharipova M. The Practical Potential of Bacilli and Their Enzymes for Industrial Production. Front Microbiol | www.frontiersin.org [Internet]. 2020;1:1782. Available from: www.frontiersin.org | spa |
dc.relation.references | Peng Y, Yang XJ, Xiao L, Zhang YZ. Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis. Res Microbiol. 2004;155(3):167–73. | spa |
dc.relation.references | Contesini FJ, Melo RR de, Sato HH. An overview of Bacillus proteases: from production to application. Crit Rev Biotechnol [Internet]. 2018;38(3):321–34. Available from: https://doi.org/10.1080/07388551.2017.1354354 | spa |
dc.relation.references | Gao Z, Wu H, Shi L, Zhang X, Sheng R, Yin F, et al. Study of Bacillus subtilis on growth performance, nutrition metabolism and intestinal microflora of 1 to 42 d broiler chickens. Anim Nutr [Internet]. 2017;3(2):109–13. Available from: http://dx.doi.org/10.1016/j.aninu.2017.02.002 | spa |
dc.relation.references | Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front Microbiol. 2017 Aug 10;8(AUG):1490. | spa |
dc.relation.references | Turner P V. The role of the gut microbiota on animal model reproducibility. Anim Model Exp Med. 2018;1(2):109–15. | spa |
dc.relation.references | Pourabedin M, Zhao X. Prebiotics and gut microbiota in chickens. FEMS Microbiol Lett [Internet]. 2015 Aug 1 [cited 2023 Mar 18];362(15). Available from: https://www.researchgate.net/publication/280447632_Prebiotics_and_gut_microbiota_in_chickens | spa |
dc.relation.references | Kers JG, de Oliveira JE, Fischer EAJ, Tersteeg-Zijderveld MHG, Konstanti P, Stegeman JA, et al. Associations between phenotypic characteristics and clinical parameters of broilers and intestinal microbial development throughout a production cycle: A field study. Microbiologyopen [Internet]. 2020 Nov 1 [cited 2023 Jun 5];9(11):e1114. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/mbo3.1114 | spa |
dc.relation.references | MONDAL A, DE K, JOARDAR SN. Gut microbiota modulation for enhanced poultry production. Indian J Anim Heal. 2020;59(2-Spl):128–37. | spa |
dc.relation.references | Yeoman CJ, Chia N, Jeraldo P, Sipos M, Goldenfeld ND, White BA. The microbiome of the chicken gastrointestinal tract. Anim Health Res Rev. 2012;13(1):89–99. | spa |
dc.relation.references | Svihus B. Function of the digestive system. J Appl Poult Res. 2014;23(2):306–14. | spa |
dc.relation.references | Board AS. U . S . Broiler. 2002;(Chart 6). | spa |
dc.relation.references | Reading F. POULTRY Contents. 1998;331–2. | spa |
dc.relation.references | Fenavi. Aspectos Producutivos Y Aministrativos En La Industria Avícola. FenaviOrg [Internet]. 2019;148:56. Available from: https://fenavi.org/wp-content/uploads/2019/02/ASPECTOS-PRODUCTIVOS-Y-ADMINISTRATIVOS-EN-LA-INDUSTRIA-AVÍCOLA.pdf | spa |
dc.relation.references | Poultry. [consultado el 12 de julio de 2022]. Disponible en: https://avicultura.proultry.com/productos/cobb-espanola/cobb500 | spa |
dc.relation.references | Colaves. Pollos COBB 500. [Internet]. Disponible en: https://colaves.com/project/pollos-cobb-de-engorde/ | spa |
dc.relation.references | Ross (An Aviagen Brand). [Internet]. Disponible en:https://es.aviagen.com/brands/ross/products/ross-308 | spa |
dc.relation.references | El sitio avicola. [Internet]. Disponible en: hhttps://www.elsitioavicola.com/ | spa |
dc.relation.references | Gyles CL. Antimicrobial resistance in selected bacteria from poultry. Anim Heal Res Rev [Internet]. 2008 [cited 2023 Mar 8];9(2):149–58. Available from: https://www.cambridge.org/core/journals/animal-health-research-reviews/article/abs/antimicrobial-resistance-in-selected-bacteria-from-poultry/FE9AEBAB733DB758D17E0A35FFEFE062 | spa |
dc.relation.references | Nhung NT, Chansiripornchai N, Carrique-Mas JJ. Antimicrobial resistance in bacterial poultry pathogens: A review. Front Vet Sci. 2017 Aug 10;4(AUG):126. | spa |
dc.relation.references | Cosby DE, Cox NA, Harrison MA, Wilson JL, Jeff Buhr R, Fedorka-Cray PJ. Salmonella and antimicrobial resistance in broilers: A review. J Appl Poult Res. 2015 Sep 1;24(3):408–26. | spa |
dc.relation.references | FAO. Producción | Producción y productos avícolas | Organización de las Naciones Unidas para la Alimentación y la Agricultura [Internet]. [cited 2023 Feb 12]. Available from: https://www.fao.org/poultry-production-products/production/es/ | spa |
dc.relation.references | Li B, Zhang J qiu, Han X gan, Wang Z lei, Xu Y yuan, Miao J feng. Macleaya cordata helps improve the growth-promoting effect of chlortetracycline on broiler chickens. J Zhejiang Univ Sci B [Internet]. 2018 Oct 1 [cited 2023 Mar 14];19(10):776–84. Available from: https://link.springer.com/article/10.1631/jzus.B1700435 | spa |
dc.relation.references | Mackenzie JS, Jeggo M. The One Health Approach—Why Is It So Important? Trop Med Infect Dis [Internet]. 2019 May 31 [cited 2023 Mar 5];4(2). Available from: /pmc/articles/PMC6630404/ | spa |
dc.relation.references | Diario Oficial de la Unión Europea. REGLAMENTO DE EJECUCIÓN (UE) 2017/ 1904 DE LA COMISIÓN - de 18 de octubre de 2017 - relativo a la autorización de un preparado de Bacillus licheniformis DSM 28710 como aditivo en la alimentación de pollos de engorde y de pollitas criadas para puesta (titu. 2017 [cited 2023 Feb 12]; Available from: https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports | spa |
dc.relation.references | Matulka RA. Standard Operating Procedures for Administration of GRAS Notices. 2012; | spa |
dc.relation.references | Cutting SM. Bacillus probiotics. Food Microbiol [Internet]. 2011;28(2):214–20. Available from: http://dx.doi.org/10.1016/j.fm.2010.03.007 | spa |
dc.relation.references | Lee N-KK, Kim W-SS, Paik H-DD. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol [Internet]. 2019 Oct 1 [cited 2023 Mar 8];28(5):1297–305. Available from: https://link.springer.com/article/10.1007/s10068-019-00691-9 | spa |
dc.relation.references | Ramlucken U, Lalloo R, Roets Y, Moonsamy G, van Rensburg CJ, Thantsha MS. Advantages of Bacillus-based probiotics in poultry production. Livest Sci [Internet]. 2020 Nov 1 [cited 2023 Feb 12];241(August):104215. Available from: https://doi.org/10.1016/j.livsci.2020.104215 | spa |
dc.relation.references | Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos MDL, Bories G, et al. Safety and efficacy of Alterion NE® (Bacillus subtilis DSM 29784) as a feed additive for minor poultry species for fattening and reared for laying. EFSA J [Internet]. 2018 Mar 1 [cited 2023 Feb 12];16(3):5204. Available from: /pmc/articles/PMC7009566/ | spa |
dc.relation.references | Rychen G, Aquilina G, Azimonti G, Bampidis V, De M, Bastos L, et al. Safety and efficacy of B-Act® (Bacillus licheniformis DSM 28710) for chickens for fattening and chickens reared for laying. EFSA J [Internet]. 2016 Nov 1 [cited 2023 Feb 12];14(11):e04615. Available from: https://onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2016.4615 | spa |
dc.relation.references | Bampidis V, Azimonti G, Bastos M de L, Christensen H, Dusemund B, Kouba M, et al. Safety and efficacy of Calsporin ® (Bacillus subtilis DSM 15544) for all poultry species. EFSA J. 2019 Mar 1;17(3). | spa |
dc.relation.references | Teo AYL, Tan HM. Effect of Bacillus subtilis PB6 (CloSTAT) on Broilers Infected with a Pathogenic Strain of Escherichia coli. J Appl Poult Res. 2006 Jul 1;15(2):229–35. | spa |
dc.relation.references | Zaghari M, Zahroojian N, Riahi M, Parhizkar S. Effect of Bacillus subtilis spore (GalliPro®) nutrients equivalency value on broiler chicken performance. Ital J Anim Sci [Internet]. 2015 [cited 2023 Jan 11];14(1):94–8. Available from: https://www.tandfonline.com/doi/abs/10.4081/ijas.2015.3555 | spa |
dc.relation.references | Upadhaya SD, Rudeaux F, Kim IH. Effects of inclusion of Bacillus subtilis (Gallipro) to energy- and protein-reduced diet on growth performance, nutrient digestibility, and meat quality and gas emission in broilers. Poult Sci. 2019 May 1;98(5):2169–78. | spa |
dc.relation.references | Wang WC, Yan FF, Hu JY, Amen OA, Cheng HW. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. J Anim Sci. 2018 May 4;96(5):1654–66. | spa |
dc.relation.references | Woldemariamyohannes K, Wan Z, Yu Q, Li H, Wei X, Liu Y, et al. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens. J Agric Food Chem [Internet]. 2020 Dec 16 [cited 2023 Mar 13];68(50):14709–27. Available from: https://pubs.acs.org/doi/abs/10.1021/acs.jafc.0c06396 | spa |
dc.relation.references | Marseglia GL, Tosca M, Cirillo I, Licari A, Leone M, Marseglia A, et al. Efficacy of Bacillus clausii spores in the prevention of recurrent respiratory infections in children: a pilot study. Ther Clin Risk Manag [Internet]. 2007 [cited 2023 Mar 13];3(1):13–7. Available from: https://pubmed.ncbi.nlm.nih.gov/18360611/ | spa |
dc.relation.references | Konuray G, Erginkaya Z. Potential Use of Bacillus coagulans in the Food Industry. Foods 2018, Vol 7, Page 92 [Internet]. 2018 Jun 13 [cited 2023 Mar 13];7(6):92. Available from: https://www.mdpi.com/2304-8158/7/6/92/htm | spa |
dc.relation.references | Lee NK, Kim WS, Paik HD. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier. Food Sci Biotechnol [Internet]. 2019 Oct 1 [cited 2023 Mar 8];28(5):1297–305. Available from: https://link.springer.com/article/10.1007/s10068-019-00691-9 | spa |
dc.relation.references | Su Y, Liu C, Fang H, Zhang D. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb Cell Factories 2020 191 [Internet]. 2020 Sep 3 [cited 2023 Mar 13];19(1):1–12. Available from: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-020-01436-8 | spa |
dc.relation.references | Lee KK. UARSB (USA). A and NRI, Lillehoj HS, Siragusa GR. Direct-fed microbials and their impact on the intestinal microflora and immune system of chickens [Internet]. 2010 p. 106–14. Available from: https://www.jstage.jst.go.jp/article/jpsa/advpub/0/advpub_009096/_article/-char/ja/ | spa |
dc.relation.references | Neveling DP, Dicks LMT. Probiotics: an Antibiotic Replacement Strategy for Healthy Broilers and Productive Rearing [Internet]. Probiotics and Antimicrobial Proteins Springer; Feb 1, 2021. Available from: https://link.springer.com/article/10.1007/s12602-020-09640-z | spa |
dc.relation.references | Fazelnia K, Fakhraei J, Yarahmadi HM, Amini K. Dietary Supplementation of Potential Probiotics Bacillus subtilis, Bacillus licheniformis, and Saccharomyces cerevisiae and Synbiotic Improves Growth Performance and Immune Responses by Modulation in Intestinal System in Broiler Chicks Challenged with Sal. Probiotics Antimicrob Proteins [Internet]. 2021 Aug 1 [cited 2023 Jan 11];13(4):1081–92. Available from: https://link.springer.com/article/10.1007/s12602-020-09737-5 | spa |
dc.relation.references | Li CL, Wang J, Zhang HJ, Wu SG, Hui QR, Yang CB, et al. Intestinal morphologic and microbiota responses to dietary Bacillus spp. in a broiler chicken model. Front Physiol [Internet]. 2019 [cited 2023 Jan 11];10(JAN):1–18. Available from: https://www.frontiersin.org/articles/10.3389/fphys.2018.01968/full | spa |
dc.relation.references | Qiu K, Li C-LL, Wang J, Qi G-HH, Gao J, Zhang H-JJ, et al. Effects of Dietary Supplementation With Bacillus subtilis, as an Alternative to Antibiotics, on Growth Performance, Serum Immunity, and Intestinal Health in Broiler Chickens. 2021 Nov 29 [cited 2023 Jan 11];8:786878–786878. Available from: https://www.frontiersin.org/articles/10.3389/fnut.2021.786878/full | spa |
dc.relation.references | Sokale AO, Menconi A, Mathis GF, Lumpkins B, Sims MD, Whelan RA, et al. Effect of Bacillus subtilis DSM 32315 on the intestinal structural integrity and growth performance of broiler chickens under necrotic enteritis challenge. Poult Sci. 2019 Nov 1;98(11):5392–400. | spa |
dc.relation.references | Jayaraman S, Thangavel G, Kurian H, Mani R, Mukkalil R, Chirakkal H. Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poult Sci. 2013;92(2):370–4. | spa |
dc.relation.references | Rajput IR, Li LY, Xin X, Wu BB, Juan ZL, Cui ZW, et al. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult Sci [Internet]. 2013 [cited 2023 Jan 11];92(4):956–65. Available from: https://www.sciencedirect.com/science/article/pii/S003257911938678X | spa |
dc.relation.references | Knap I, Lund B, Kehlet AB, Hofacre C, Mathis G. Bacillus licheniformis prevents necrotic enteritis in broiler chickens. Avian Dis. 2010;54(2):931–5. | spa |
dc.relation.references | Molnár AK, Podmaniczky B, Kürti P, Tenk I, Glávits R, Virág G, et al. Effect of different concentrations of Bacillus subtilis on growth performance, carcase quality, gut microflora and immune response of broiler chickens. Br Poult Sci [Internet]. 2011 Dec [cited 2023 Jan 11];52(6):658–65. Available from: https://www.tandfonline.com/doi/abs/10.1080/00071668.2011.636029 | spa |
dc.relation.references | Kh H, Zh R, Musa Bodinga B, Hayat K, Liu X, Zhou J, et al. Effects of Bacillus subtilis DSM 32315 on Immunity, nutrient transporters and functional diversity of cecal microbiome of broiler chickens in necrotic enteritis challenge. eprints.science-line.com [Internet]. 2020 [cited 2023 Jan 11];10(3):527–44. Available from: http://eprints.science-line.com/id/eprint/140/ | spa |
dc.relation.references | Chen JY, Yu YH. Bacillus subtilis–fermented products ameliorate the growth performance and alter cecal microbiota community in broilers under lipopolysaccharide challenge. Poult Sci [Internet]. 2021 Feb 1 [cited 2023 Jan 11];100(2):875–86. Available from: https://www.sciencedirect.com/science/article/pii/S0032579120308464 | spa |
dc.relation.references | Hung AT, Lin SY, Yang TY, Chou CK, Liu HC, Lu JJ, et al. Effects of Bacillus coagulans ATCC 7050 on growth performance, intestinal morphology, and microflora composition in broiler chickens. Anim Prod Sci. 2012;52(9):874–9. | spa |
dc.relation.references | Hong Y, Cheng Y, Li Y, Li X, Zhou Z, Shi D, et al. Preliminary Study on the Effect of Bacillus amyloliquefaciens TL on Cecal Bacterial Community Structure of Broiler Chickens. 2019; Available from: https://doi.org/10.1155/2019/5431354 | spa |
dc.relation.references | Zhang B, Zhang H, Yu Y, Zhang R, Wu Y, Yue M, et al. Effects of Bacillus coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult Sci [Internet]. 2021 Jun 1 [cited 2023 Jan 11];100(6). Available from: https://www.sciencedirect.com/science/article/pii/S0032579121002029 | spa |
dc.relation.references | Bilal M, Si W, Barbe F, Chevaux E, Sienkiewicz O, Zhao X. Effects of novel probiotic strains of Bacillus pumilus and Bacillus subtilis on production, gut health, and immunity of broiler chickens raised under suboptimal conditions. Poult Sci [Internet]. 2021 Mar 1 [cited 2023 Jan 11];100(3). Available from: https://www.sciencedirect.com/science/article/pii/S0032579120309007 | spa |
dc.relation.references | Zhen W, Shao Y, Gong X, Wu Y, Geng Y, Wang Z, et al. Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poult Sci [Internet]. 2018 Aug 1 [cited 2023 Jan 11];97(8):2654–66. Available from: http://dx.doi.org/10.3382/ps/pey119 | spa |
dc.relation.references | Wu Y, Shao Y, Song B, Zhen W, Wang Z, Guo Y, et al. Effects of Bacillus coagulans supplementation on the growth performance and gut health of broiler chickens with Clostridium perfringens-induced necrotic enteritis. J Anim Sci Biotechnol [Internet]. 2018 Jan 25 [cited 2023 Jan 11];9(1). Available from: https://jasbsci.biomedcentral.com/articles/10.1186/s40104-017-0220-2 | spa |
dc.relation.references | Baruzzi F, Quintieri L, Morea M, Caputo L. Antimicrobial compounds produced by Bacillus spp. and applications in food. 2011; | spa |
dc.relation.references | Keerqin C, Rhayat L, Zhang ZH, Gharib-Naseri K, Kheravii SK, Devillard E, et al. Probiotic Bacillus subtilis 29,784 improved weight gain and enhanced gut health status of broilers under necrotic enteritis condition. Poult Sci. 2021 Apr 1;100(4). | spa |
dc.relation.references | Lee KWKKW, Kim DDK, Lillehoj HSH, Jang SI, Lee SH, … SJ-A feed science and, et al. Immune modulation by Bacillus subtilis-based direct-fed microbials in commercial broiler chickens. Anim Feed Sci Technol [Internet]. 2015 [cited 2023 Jan 11];200(1):76–85. Available from: https://www.sciencedirect.com/science/article/pii/S0377840114004076 | spa |
dc.relation.references | Li Y, Zhang H, Chen YP, Yang MX, Zhang LL, Lu ZX, et al. Bacillus amyloliquefaciens supplementation alleviates immunological stress in lipopolysaccharide-challenged broilers at early age. Poult Sci. 2015 Apr 23;94(7):1504–11. | spa |
dc.relation.references | Molnár AK, Podmaniczky B, Kürti P, Glávits R, Virág G, Szabó Z, et al. Effect of Different Concentrations of Bacillus subtilis on Immune Response of Broiler Chickens. Probiotics Antimicrob Proteins. 2011 Mar;3(1):8–14. | spa |
dc.relation.references | Wang Y, Heng C, Zhou X, Cao G, Jiang L, Wang J, et al. Supplemental Bacillus subtilis DSM 29784 and enzymes, alone or in combination, as alternatives for antibiotics to improve growth performance, digestive enzyme activity, anti-oxidative status, immune response and the intestinal barrier of broiler chickens. Br J Nutr [Internet]. 2021 Mar 14 [cited 2023 Jan 11];125(5):494–507. Available from: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/supplemental-bacillus-subtilis-dsm29784-and-enzymes-alone-or-in-combination-as-alternatives-for-antibiotics-to-improve-growth-performance-digestive-enzyme-activity-antioxidative- | spa |
dc.relation.references | Wealleans AL, Walsh MC, Romero LF, Ravindran V. Comparative effects of two multi-enzyme combinations and a Bacillus probiotic on growth performance, digestibility of energy and nutrients, disappearance of non-starch polysaccharides, and gut microflora in broiler chickens. Poult Sci. 2017 Dec 1;96(12):4287–97. | spa |
dc.relation.references | Rivera-Pérez W, Barquero-Calvo E, Chaves AJ. Effect of the use of probiotic Bacillus subtilis (QST 713) as a growth promoter in broilers: an alternative to bacitracin methylene disalicylate. Poult Sci [Internet]. 2021 Sep 1 [cited 2023 Jan 11];100(9). Available from: https://www.sciencedirect.com/science/article/pii/S0032579121003953 | spa |
dc.relation.references | Manafi M, Hedayati M, Mirzaie S. Probiotic Bacillus species and Saccharomyces boulardii improve performance, gut histology and immunity in broiler chickens. South African J Anim Sci. 2018;48(2):379–89. | spa |
dc.relation.references | Sikandar A, Zaneb H, Younus M, Masood S, Aslam A, Shah M, et al. Growth performance, immune status and organ morphometry in broilers fed Bacillus subtilis-supplemented diet. journals.co.za [Internet]. 2017 [cited 2023 Jan 11];47(3):378–88. Available from: https://journals.co.za/doi/abs/10.4314/sajas.v47i3.14 | spa |
dc.relation.references | Ruiz Sella SRB, Bueno T, de Oliveira AAB, Karp SG, Soccol CR. Bacillus subtilis natto as a potential probiotic in animal nutrition. https://doi.org/101080/0738855120201858019 [Internet]. 2021 [cited 2023 Mar 18];41(3):355–69. Available from: https://www.tandfonline.com/doi/abs/10.1080/07388551.2020.1858019 | spa |
dc.relation.references | Khalid F, Khalid A, Fu Y, Hu Q, Zheng Y, Khan S, et al. Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol [Internet]. 2021 Jul 1 [cited 2023 Mar 18];59(7):627–33. Available from: https://link.springer.com/article/10.1007/s12275-021-1161-1 | spa |
dc.relation.references | Larsen N, Thorsen L, Kpikpi EN, Stuer-Lauridsen B, Cantor MD, Nielsen B, et al. Characterization of Bacillus spp. strains for use as probiotic additives in pig feed. Appl Microbiol Biotechnol [Internet]. 2014 Feb 1 [cited 2023 Mar 18];98(3):1105–18. Available from: https://link.springer.com/article/10.1007/s00253-013-5343-6 | spa |
dc.relation.references | Castañeda CD, Gamble JN, Wamsley KGS, McDaniel CD, Kiess AS. In ovo administration of Bacillus subtilis serotypes effect hatchability, 21-day performance, and intestinal microflora. Poult Sci. 2021 Jun 1;100(6):101125. | spa |
dc.relation.references | Triplett MD, Zhai W, Peebles ED, McDaniel CD, Kiess AS. Investigating commercial in ovo technology as a strategy for introducing probiotic bacteria to broiler embryos. Poult Sci. 2018 Feb 1;97(2):658–66. | spa |
dc.relation.references | Zhu K, Hölzel CS, Cui Y, Mayer R, Wang Y, Dietrich R, et al. Probiotic Bacillus cereus Strains, a Potential Risk for Public Health in China. Front Microbiol [Internet]. 2016 [cited 2023 Mar 15];7(MAY). Available from: https://pubmed.ncbi.nlm.nih.gov/27242738/ | spa |
dc.relation.references | Kim WH, Lillehoj HS. Immunity, immunomodulation, and antibiotic alternatives to maximize the genetic potential of poultry for growth and disease response. Anim Feed Sci Technol [Internet]. 2019 [cited 2023 Jan 11];250:41–50. Available from: https://www.sciencedirect.com/science/article/pii/S0377840118301858 | spa |
dc.rights.accessrights | info:eu-repo/semantics/closedAccess | spa |
dc.rights.creativecommons | Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0) | spa |
dc.subject.proposal | Bacillus | spa |
dc.subject.proposal | Probióticos | spa |
dc.subject.proposal | Pollos de engorde | spa |
dc.subject.proposal | Microbiota intestinal | spa |
dc.subject.proposal | Inmunomodulación | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/publishedVersion | spa |
dc.rights.coar | http://purl.org/coar/access_right/c_14cb | spa |