Show simple item record

dc.contributor.advisorArévalo Pinzón, Gabriela
dc.contributor.advisorCastañeda Ramírez, Jeimmy Johana
dc.contributor.authorMoreno Salgado, Carlos Oswaldo
dc.date.accessioned2024-05-22T16:38:21Z
dc.date.available2024-05-22T16:38:21Z
dc.date.issued2023-10
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/6899
dc.description.abstractPseudomonas aeruginosa (P. aeruginosa) es un patógeno oportunista con alta persistencia en los ambientes clínicos y alta capacidad para formar biopelículas resistentes a una amplia cantidad de agentes antimicrobianos donde se destacan los carbapenémicos. Basados en este importante antecedente y teniendo en cuenta que es esencial mantener una vigilancia epidemiológica de los genes circulantes en las distintas unidades hospitalarias, el presente trabajo se enfocó en determinar la frecuencia de genes bla que codifican para las distintas carbapenemasas en aislamientos de P. aeruginosa obtenidos de distintos servicios médicos del Hospital Universitario Erasmo Meoz (HUEM) y correlacionarlos con la presencia de biopelículas. En un periodo de 12 meses se colectaron 590 aislamientos de P. aeruginosa obtenidos principalmente de las unidades de COVID urgencias adultos, Urgencias adultos y la Unidad de Cuidados Intensivos. De los 590 aislamientos, 286 presentaron resistencia a los carbapenémicos, donde el 99% mostró la presencia de carbapenemasas, donde el 86% correspondió a carbapenemasas de tipo metalo-β-lactamasa. Por su parte, las pruebas genotípicas detectaron que el 70% de los aislamientos contenían genes de tipo blaVIM. Así mismo, se detectó que algunos aislados clínicos (16%) contenían simultáneamente la presencia de blaKPC y blaVIM. Finalmente, se evidencio una diferencia estadísticamente significativa entre la formación de biopelícula y la presencia y ausencia de resistencia a los carbapenémicos, lo que pone en evidencia la magnitud del peligro que representan estos tipos de aislamientos y la necesidad de implementar rutas de manejo de tratamiento para este tipo de microorganismo.spa
dc.description.abstractPseudomonas aeruginosa (P. aeruginosa) is an opportunistic pathogen with high persistence in clinical settings and a high capacity to form biofilms resistant to a wide range of antimicrobial agents, especially carbapenems. Based on this important background and taking into account that it is essential to maintain epidemiological surveillance of the circulating genes in the different hospital units, the present work focused on determining the frequency of bla genes that code for the different carbapenemases in P. aeruginosa isolates. obtained from different medical services of the Erasmo Meoz University Hospital (HUEM) and correlate them with the presence of biofilms. In a period of 12 months, 590 isolates of P. aeruginosa were collected, obtained mainly from the adult emergency COVID units, adult ER and the Intensive Care Unit. Of the 590 isolates, 286 presented resistance to carbapenems, where 99% showed the presence of carbapenemases, where 86% corresponded to metallo-β-lactamase type carbapenemases. On the other hand, the genotypic tests detected that 70% of the isolates contained blaVIM type genes. Likewise, it was detected that some clinical isolates (16%) simultaneously contained the presence of blaKPC and blaVIM. Finally, a statistically significant difference was evidenced between biofilm formation and the presence and absence of resistance to carbapenems, which highlights the magnitude of the danger that these types of isolates represent and the need to implement treatment management routes to this type of microorganism.eng
dc.description.tableofcontentsContenido Resumen V Abstract VI Lista de figuras X Lista de tablas XII Lista de símbolos y abreviaturas XIII 1. Introducción 15 2. Objetivos 18 1.1 Objetivo General 18 1.2 Objetivos específicos 18 2. Marco conceptual y generalidades 19 2.1 Características de Pseudomonas aeruginosa 19 2.2 Factores de virulencia de P. aeruginosa 21 2.3 Formación de biopelículas 23 2.3.1 Alginato 23 2.3.2 Desarrollo de biopelículas 24 2.3.3 Mecanismos moleculares en la detección de quórum en el desarrollo de biopelículas 26 2.3.4 Sistemas QS de acil-homoserina lactona: Las y Rhl 27 2.3.5 El sistema Quinolona QS: Pqs28 2.3.6 Sistema QS: Iqs 28 2.4 Resistencia a los antibióticos de la biopelícula 30 2.5 Resistencia intrínseca a los antibióticos 32 2.5.1 Permeabilidad de la membrana exterior 32 2.5.2 Sistemas de expulsión para eliminar factores de resistencia a los medicamentos 33 2.5.3 Enzimas inactivadoras de antibióticos 34 2.6 Resistencia antibiótica adquirida 35 2.6.1 Resistencia por mutaciones 35 2.6.2 Adquisición de genes de resistencia 36 2.7 Resistencia antibiótica adaptativa 37 2.7.1 Resistencia mediada por biopelículas 37 2.7.2 Células persistentes en la resistencia a los antibióticos 38 2.8 Antibióticos empleados contra P. aeruginosa 39 2.9 Clases de carbapenemasas en P. aeruginosa y su entorno genético 40 2.9.1 Carbapenemasas clase A 42 2.9.2 Carbapenemasas de clase B 43 2.9.3 Carbapenemasas de clase D 44 2.10 Panorama general de la distribución de la resistencia de P. aeruginosa a nivel mundial . 45 2.10.1 Distribución de P. aeruginosa en Colombia 48 2.11 E.S.E Hospital Universitario Erasmo Meoz 50 2.11.1 Usuarios de los servicios de salud 50 2.11.2 Área de influencia 51 2.11.3 Servicios prestados 51 2.11.4 Hospitalización general de adultos 51 2.11.5 Hospitalización general pediátrica 52 2.11.6 Cuidado intermedio básico neonatal 52 2.11.7 Cuidado intermedio adultos52 2.11.8 Quirúrgicos 53 2.11.9 Cirugía general 53 2.11.10 Zona de aislamiento respiratorio 53 3. Metodología 54 3.1 Materiales y métodos 54 3.1.1 Aislados bacterianos 54 3.1.2 Estudio de la sensibilidad antimicrobiana 56 3.1.3 Detección de carbapenemasas en aislados clínicos de P. aeruginosa 57 3.1.4 Detección rápida de carbapenemasas 58 3.1.5 Detección fenotípica de metalo-β-lactamasas- MBL 59 3.1.6 Detección genotípica 60 3.1.7 Determinación de la formación de biopelícula mediante el ensayo MBEC 61 3.2 Análisis estadístico 63 4.1 Descripción de los aislamientos clínicos de P. aeruginosa provenientes del HUEM 64 4.2 Comportamiento microbiológico por tipo de muestras 66 4.2.1 Zona de aislamiento respiratorio COVID 67 4.2.2 Servicios de urgencias adultos consulta y observación 67 4.2.3 UCI adultos 67 4.2.4 Servicios de Hospitalización 67 4.2.5 Servicios de Quirófanos 68 4.2.6 Estancia cirugía especializada y cirugía general 68 4.2.7 Servicios de UCI neonatal y pediátrica, urgencias pediatría y hospitalización pediatría. 68 4.3 Estudio de la sensibilidad antimicrobiana 68 4.3.1 Perfil de resistencia antimicrobiana en el servicio de zona de aislamiento respiratorio COVID 70 4.3.2 Perfil de resistencia antimicrobiana en los servicios de urgencias adultos consulta y observación 70 4.3.3 Perfil de resistencia antimicrobiana UCI adultos 70 4.3.4 Perfil de resistencia antimicrobiana servicios de Hospitalización 71 4.3.5 Perfil de resistencia antimicrobiana servicios de Quirófanos 71 4.3.6 Perfil de resistencia antimicrobiana servicio de estancia cirugía especializada y cirugía general 71 4.3.7 Perfil de resistencia antimicrobiana de los servicios de UCI neonatal y pediátrica, urgencias pediatría y hospitalización pediatría. 72 4.4 Detección fenotípica de metalo-β-lactamasas 72 4.5 Detección rápida de carbapenemasas 73 4.6 Detección de carbapenemasas en aislados clínicos de P. aeruginosa 74 4.6.1 Zona de aislamiento respiratorio COVID 75 4.6.2 Servicios de urgencias adultos consulta y observación 76 4.6.3 UCI adultos 77 4.6.4 Servicios de Hospitalización 77 4.6.5 Servicios de Quirófanos 78 4.6.6 Estancia cirugía especializada y cirugía general 79 4.6.7 Servicios de UCI neonatal y pediátrica, urgencias pediatría y hospitalización pediatría. 80 4.7 Distribución de carbapenemasas en aislados clínicos de P. aeruginosa de acuerdo a la comorbilidad 80 4.8 Distribución de carbapenemasas en aislados clínicos de P. aeruginosa en los diferentes servicios clínico del HUEM 82 4.8.1 Zona de aislamiento respiratorio COVID 83 4.8.2 Servicios de urgencias adultos consulta y observación 84 4.8.3 UCI adultos 85 4.8.1 Servicios de Hospitalización 86 4.8.2 Servicios de Quirófanos 87 4.8.3 Estancia cirugía especializada y cirugía general 88 4.8.4 Servicios de UCI neonatal y pediátrica, urgencias pediatría y hospitalización pediatría 88 4.9 Determinación de la formación de biopelícula mediante el ensayo MBEC 89 A. Anexo 1 125 B. Anexo 2 126 C. Anexo 3 127spa
dc.format.extent127p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleCorrelación entre la formación de biopelículas y la presencia de carbapenemasas en Pseudomonas aeruginosa aisladas de pacientes del Hospital Universitario Erasmo Meoz de la ciudad de Cúcutaspa
dc.typeTrabajo de grado - Maestríaspa
dc.contributor.corporatenameUniversidad Colegio Mayor de Cundinamarcaspa
dc.contributor.researchgroupBiotecnología y genéticaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Microbiologíaspa
dc.description.researchareaSalud humanaspa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.C, Colombiaspa
dc.publisher.programMaestría en Microbiologíaspa
dc.relation.referencesFarfour E, Lecuru M, Dortet L, Le Guen M, Cerf C, Karnycheff F, Bonnin RA, Vasse M, Lesprit P; SARS-CoV-2 Hospital Foch study group. Carbapenemase-producing Enterobacterales outbreak: Another dark side of COVID-19. Am J Infect Control. 2020 Dec;48(12):1533-1536. doi: 10.1016/j.ajic.2020.09.015. Epub 2020 Oct 2. PMID: 33011336; PMCID: PMC7529666.spa
dc.relation.referencesOrganización Panamericana de la Salud/Organización Mundial de la Salud (OPS/OMS). Alerta Epidemiológica. Emergencia e incremento de nuevas combinaciones de carbapenemasas en Enterobacterales en Latinoamérica y el Caribe. 22 de octubre de 2021.spa
dc.relation.referencesThi MTT, Wibowo D, Rehm BHA. Pseudomonas aeruginosa Biofilms. Int J Mol Sci. 2020 nov 17;21(22):8671. doi: 10.3390/ijms21228671. PMID: 33212950; PMCID: PMC7698413.spa
dc.relation.referencesLucien MAB, Canarie MF, Kilgore PE, Jean-Denis G, Fénélon N, Pierre M, Cerpa M, Joseph GA, Maki G, Zervos MJ, Dely P, Boncy J, Sati H, Rio AD, Ramon-Pardo P. Antibiotics and antimicrobial resistance in the COVID-19 era: Perspective from resource-limited settings. Int J Infect Dis. 2021 Mar; 104:250-254. doi: 10.1016/j.ijid.2020.12.087. Epub 2021 Jan 9. PMID: 33434666; PMCID: PMC7796801.spa
dc.relation.referencesTuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens. 2022 feb 27;11(3):300. doi: 10.3390/pathogens11030300. PMID: 35335624; PMCID: PMC8950561.spa
dc.relation.referencesRada AM, Hernández-Gómez C, Restrepo E, Villegas MV. Distribution and molecular characterization of beta-lactamases in Gram-negative bacteria in Colombia, 2001-2016. Biomédica. 2019 May 1; 39(s1):199-220. English, Spanish. doi: 10.7705/Biomédica. v39i3.4351. PMID: 31529860.spa
dc.relation.referencesOrtega-Peña Silvestre, Hernández-Zamora Edgar. Biopelículas microbianas y su impacto en áreas médicas: fisiopatología, diagnóstico y tratamiento. Bol. Med. Hosp. Infant. Mex. 2018 abr [citado 2022 Mar 21]; 75(2): 79-88. Disponible em: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-11462018000200079&lng=pt. https://doi.org/10.24875/bmhim.m18000012.spa
dc.relation.referencesJamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA. Bacterial biofilm and associated infections. J Chin Med Assoc. 2018 Jan;81(1):7-11. doi: 10.1016/j.jcma.2017.07.012. Epub 2017 Oct 15. PMID: 29042186.spa
dc.relation.referencesPaz-Zarza Víctor Manuel, Mangwani-Mordani Simran, Martínez-Maldonado Alejandra, Álvarez-Hernández Diego, Solano-Gálvez Sandra Georgina, Vázquez-López Rosalino. Pseudomonas aeruginosa: patogenicidad y resistencia antimicrobiana en la infección urinaria. Rev. chil. infectol. [Internet]. 2019 abr; 36(2): 180-189.spa
dc.relation.referencesSarabhai S, Sharma P, Capalash N. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One. 2013;8(1): e53441. doi: 10.1371/journal.pone.0053441. Epub 2013 Jan 8. PMID: 23320085; PMCID: PMC3539995.spa
dc.relation.referencesGlen KA, Lamont IL. β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens. 2021 Dec 18; 10(12):1638. doi: 10.3390/pathogens10121638. PMID: 34959593; PMCID: PMC8706265.spa
dc.relation.referencesZowawi HM, Harris PN, Roberts MJ, Tambyah PA, Schembri MA, Pezzani MD, Williamson DA, Paterson DL. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nat Rev Urol. 2015 oct; 12(10):570-84. doi: 10.1038/nrurol.2015.199. Epub 2015 Sep 1. PMID: 26334085.spa
dc.relation.referencesHirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res. 2010 Aug; 10(4):441-51. doi: 10.1586/erp.10.49. PMID: 20715920; PMCID: PMC3071543.spa
dc.relation.referencesHorcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019 Aug 28; 32(4): e00031-19. doi: 10.1128/CMR.00031-19. PMID: 31462403; PMCID: PMC6730496.spa
dc.relation.referencesTuon FF, Cieslinski J, Rodrigues SDS, Serra FB, Paula MD. Evaluation of in vitro activity of ceftolozane-tazobactam against recent clinical bacterial isolates from Brazil - the EM200 study. Braz J Infect Dis. 2020 Mar-Apr; 24(2):96-103. doi: 10.1016/j.bjid.2020.04.004. Epub 2020 Apr 28. PMID: 32360070; PMCID: PMC9392040spa
dc.relation.referencesReynolds D, Kollef M. The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs. 2021 Dec;81(18):2117-2131. doi: 10.1007/s40265-021-01635-6. Epub 2021 Nov 7. PMID: 34743315; PMCID: PMC8572145.spa
dc.relation.referencesGhafoor A, Hay ID, Rehm BH. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol. 2011 Aug;77(15):5238-46. doi: 10.1128/AEM.00637-11. Epub 2011 Jun 10. PMID: 21666010; PMCID: PMC3147449.spa
dc.relation.referencesStewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet. 2001 Jul 14;358(9276):135-8. doi: 10.1016/s0140-6736(01)05321-1. PMID: 11463434.spa
dc.relation.referencesBalasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res. 2013 Jan 7; 41(1):1-20. doi: 10.1093/nar/gks1039. Epub 2012 Nov 11. PMID: 23143271; PMCID: PMC3592444.spa
dc.relation.referencesJurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci. 2021 Mar 18; 22(6):3128. doi: 10.3390/ijms22063128. PMID: 33803907; PMCID: PMC8003266.spa
dc.relation.referencesHuszczynski SM, Lam JS, Khursigara CM. The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens. 2019 Dec 19;9(1):6. doi: 10.3390/pathogens9010006. PMID: 31861540; PMCID: PMC7168646.spa
dc.relation.referencesEutamene H, Theodorou V, Schmidlin F, Tondereau V, Garcia-Villar R, Salvador-Cartier C, Chovet M, Bertrand C, Bueno L. LPS-induced lung inflammation is linked to increased epithelial permeability: role of MLCK. Eur Respir J. 2005 May;25(5):789-96. doi: 10.1183/09031936.05.00064704. PMID: 15863634.spa
dc.relation.referencesWieland CW, Siegmund B, Senaldi G, Vasil ML, Dinarello CA, Fantuzzi G. Pulmonary inflammation induced by Pseudomonas aeruginosa lipopolysaccharide, phospholipase C, and exotoxin A: role of interferon regulatory factor 1. Infect Immun. 2002 Mar;70(3):1352-8. doi: 10.1128/IAI.70.3.1352-1358.2002. PMID: 11854220; PMCID: PMC127789.spa
dc.relation.referencesLam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide. Front Microbiol. 2011 Jun 1; 2:118. doi: 10.3389/fmicb.2011.00118. PMID: 21687428; PMCID: PMC3108286.spa
dc.relation.referencesFlorez C, Raab JE, Cooke AC, Schertzer JW. Membrane Distribution of the Pseudomonas Quinolone Signal Modulates Outer Membrane Vesicle Production in Pseudomonas aeruginosa. mBio. 2017 Aug 8;8(4): e01034-17. doi: 10.1128/mBio.01034-17. PMID: 28790210; PMCID: PMC5550756.spa
dc.relation.referencesMaldonado RF, Sá-Correia I, Valvano MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev. 2016 Jul;40(4):480-93. doi: 10.1093/femsre/fuw007. Epub 2016 Apr 12. PMID: 27075488; PMCID: PMC4931227.spa
dc.relation.referencesChevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Orange N, Dufour A, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev. 2017 Sep 1;41(5):698-722. doi: 10.1093/femsre/fux020. PMID: 28981745.spa
dc.relation.referencesBukhari SI, Aleanizy FS. Association of OprF mutant and disturbance of biofilm and pyocyanin virulence in pseudomonas aeruginosa. Saudi Pharm J. 2020 Feb;28(2):196-200. doi: 10.1016/j.jsps.2019.11.021. Epub 2019 Dec 7. PMID: 32042258; PMCID: PMC7000307.spa
dc.relation.referencesMcClean S. Eight stranded β -barrel and related outer membrane proteins: role in bacterial pathogenesis. Protein Pept Lett. 2012 Oct;19(10):1013-25. doi: 10.2174/092986612802762688. PMID: 22533621.spa
dc.relation.referencesBouffartigues E, Moscoso JA, Duchesne R, Rosay T, Fito-Boncompte L, Gicquel G, Maillot O, Bénard M, Bazire A, Brenner-Weiss G, Lesouhaitier O, Lerouge P, Dufour A, Orange N, Feuilloley MG, Overhage J, Filloux A, Chevalier S. The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level. Front Microbiol. 2015 Jun 23; 6:630. doi: 10.3389/fmicb.2015.00630. PMID: 26157434; PMCID: PMC4477172.spa
dc.relation.referencesLee K, Yoon SS. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness. J Microbiol Biotechnol. 2017 Jun 28;27(6):1053-1064. doi: 10.4014/jmb.1611.11056. PMID: 28301918.spa
dc.relation.referencesMann EE, Wozniak DJ. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev. 2012 Jul;36(4):893-916. doi: 10.1111/j.1574-6976.2011.00322. x. Epub 2012 Jan 23. PMID: 22212072; PMCID: PMC4409827.spa
dc.relation.referencesWei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci. 2013 Oct 18;14(10):20983-1005. doi: 10.3390/ijms141020983. PMID: 24145749; PMCID: PMC3821654.spa
dc.relation.referencesTielen P, Rosenau F, Wilhelm S, Jaeger KE, Flemming HC, Wingender J. Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa. Microbiology (Reading). 2010 Jul;156(Pt 7):2239-2252. doi: 10.1099/mic.0.037036-0. Epub 2010 Apr 1. PMID: 20360178.spa
dc.relation.referencesRosenau F, Isenhardt S, Gdynia A, Tielker D, Schmidt E, Tielen P, Schobert M, Jahn D, Wilhelm S, Jaeger KE. Lipase LipC affects motility, biofilm formation and rhamnolipid production in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2010 Aug 1;309(1):25-34. doi: 10.1111/j.1574-6968.2010.02017. x. Epub 2010 May 17. PMID: 20546309.spa
dc.relation.referencesMiller CL, Romero M, Karna SL, Chen T, Heeb S, Leung KP. RsmW, Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions. BMC Microbiol. 2016 Jul 19;16(1):155. doi: 10.1186/s12866-016-0771-y. PMID: 27430253; PMCID: PMC4950607.spa
dc.relation.referencesThöming JG, Tomasch J, Preusse M, Koska M, Grahl N, Pohl S, Willger SD, Kaever V, Müsken M, Häussler S. Parallel evolutionary paths to produce more than one Pseudomonas aeruginosa biofilm phenotype. NPJ Biofilms Microbiomes. 2020 Jan 10; 6:2. doi: 10.1038/s41522-019-0113-6. PMID: 31934344; PMCID: PMC6954232spa
dc.relation.referencesOrgad O, Oren Y, Walker SL, Herzberg M. The role of alginate in Pseudomonas aeruginosa EPS adherence, viscoelastic properties and cell attachment. Biofouling. 2011 Aug;27(7):787-98. doi: 10.1080/08927014.2011.603145. PMID: 21797737.spa
dc.relation.referencesStrateva, T., Mitov, I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann Microbiol 61, 717–732 (2011). https://doi.org/10.1007/s13213-011-0273-y.spa
dc.relation.referencesRybtke M, Jensen PØ, Nielsen CH, Tolker-Nielsen T. The Extracellular Polysaccharide Matrix of Pseudomonas aeruginosa Biofilms Is a Determinant of Polymorphonuclear Leukocyte Responses. Infect Immun. 2020 Dec 15;89(1): e00631-20. doi: 10.1128/IAI.00631-20. PMID: 33077623; PMCID: PMC7927924.spa
dc.relation.referencesGoltermann L, Tolker-Nielsen T. Importance of the Exopolysaccharide Matrix in Antimicrobial Tolerance of Pseudomonas aeruginosa Aggregates. Antimicrob Agents Chemother. 2017 Mar 24;61(4): e02696-16. doi: 10.1128/AAC.02696-16. PMID: 28137803; PMCID: PMC5365683.spa
dc.relation.referencesLee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015 Jan;6(1):26-41. doi: 10.1007/s13238-014-0100-x. Epub 2014 Sep 25. PMID: 25249263; PMCID: PMC4286720.spa
dc.relation.referencesYan S, Wu G. Can Biofilm Be Reversed Through Quorum Sensing in Pseudomonas aeruginosa? Front Microbiol. 2019 Jul 23; 10:1582. doi: 10.3389/fmicb.2019.01582. PMID: 31396166; PMCID: PMC6664025.spa
dc.relation.referencesKumar R, Chhibber S, Harjai K. Quorum sensing is necessary for the virulence of Pseudomonas aeruginosa during urinary tract infection. Kidney Int. 2009 Aug;76(3):286-92. doi: 10.1038/ki.2009.183. Epub 2009 Jun 3. PMID: 19494801.spa
dc.relation.referencesMukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019 Jun;17(6):371-382. doi: 10.1038/s41579-019-0186-5. PMID: 30944413; PMCID: PMC6615036.spa
dc.relation.referencesJimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2012 Mar;76(1):46-65. doi: 10.1128/MMBR.05007-11. PMID: 22390972; PMCID: PMC3294424.spa
dc.relation.referencesUeda A, Wood TK. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog. 2009 Jun;5(6): e1000483. doi: 10.1371/journal.ppat.1000483. Epub 2009 Jun 19. PMID: 19543378; PMCID: PMC2691606.spa
dc.relation.referencesSchwarzer C, Fu Z, Patanwala M, Hum L, Lopez-Guzman M, Illek B, Kong W, Lynch SV, Machen TE. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia. Cell Microbiol. 2012 May;14(5):698-709. doi: 10.1111/j.1462-5822.2012.01753. x. Epub 2012 Feb 9. PMID: 22233488; PMCID: PMC4112999.spa
dc.relation.referencesKariminik A, Baseri-Salehi M, Kheirkhah B. Pseudomonas aeruginosa quorum sensing modulates immune responses: An updated review article. Immunol Lett. 2017 Oct; 190:1-6. doi: 10.1016/j.imlet.2017.07.002. Epub 2017 Jul 8. PMID: 28698104.spa
dc.relation.referencesLin J., Cheng J. Quorum Sensing in Pseudomonas aeruginosa and Its Relationship to Biofilm Development. Volume 1323. American Chemical Society (USA); Washington, DC, USA: 2019. pp. 1–16.spa
dc.relation.referencesGarcía-Reyes S, Soberón-Chávez G, Cocotl-Yanez M. The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein. J Med Microbiol. 2020 Jan;69(1):25-34. doi: 10.1099/jmm.0.001116. PMID: 31794380.spa
dc.relation.referencesLee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong Y, Williams P, Zhang LH. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol. 2013 May;9(5):339-43. doi: 10.1038/nchembio.1225. Epub 2013 Mar 31. Erratum in: Nat Chem Biol. 2013 Jun;9(6):406. PMID: 23542643.spa
dc.relation.referencesWang J, Wang C, Yu HB, Dela Ahator S, Wu X, Lv S, Zhang LH. Bacterial quorum-sensing signal IQS induces host cell apoptosis by targeting POT1-p53 signalling pathway. Cell Microbiol. 2019 Oct;21(10): e13076. doi: 10.1111/cmi.13076. Epub 2019 Jul 14. PMID: 31254473.spa
dc.relation.referencesKiratisin P, Tucker KD, Passador L. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol. 2002 Sep;184(17):4912-9. doi: 10.1128/JB.184.17.4912-4919.2002. PMID: 12169617; PMCID: PMC135272spa
dc.relation.referencesMcKnight SL, Iglewski BH, Pesci EC. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 2000 May;182(10):2702-8. doi: 10.1128/JB.182.10.2702-2708.2000. PMID: 10781536; PMCID: PMC101972.spa
dc.relation.referencesWu L, Estrada O, Zaborina O, Bains M, Shen L, Kohler JE, Patel N, Musch MW, Chang EB, Fu YX, Jacobs MA, Nishimura MI, Hancock RE, Turner JR, Alverdy JC. Recognition of host immune activation by Pseudomonas aeruginosa. Science. 2005 Jul 29;309(5735):774-7. doi: 10.1126/science.1112422. PMID: 16051797.spa
dc.relation.referencesZaborina O, Lepine F, Xiao G, Valuckaite V, Chen Y, Li T, Ciancio M, Zaborin A, Petrof EO, Turner JR, Rahme LG, Chang E, Alverdy JC. Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog. 2007 Mar;3(3): e35. doi: 10.1371/journal.ppat.0030035. Erratum in: PLoS Pathog. 2007 May;3(5): e67. Petroff, Elaine [corrected to Petrof, Elaine O]. PMID: 17367209; PMCID: PMC1828698.spa
dc.relation.referencesBlier AS, Veron W, Bazire A, Gerault E, Taupin L, Vieillard J, Rehel K, Dufour A, Le Derf F, Orange N, Hulen C, Feuilloley MGJ, Lesouhaitier O. C-type natriuretic peptide modulates quorum sensing molecule and toxin production in Pseudomonas aeruginosa. Microbiology (Reading). 2011 Jul;157(Pt 7):1929-1944. doi: 10.1099/mic.0.046755-0. Epub 2011 Apr 21. PMID: 21511763; PMCID: PMC3755537.spa
dc.relation.referencesSchuster M, Hawkins AC, Harwood CS, Greenberg EP. The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol Microbiol. 2004 Feb;51(4):973-85. doi: 10.1046/j.1365-2958.2003.03886. x. PMID: 14763974.spa
dc.relation.referencesBouillet S, Ba M, Houot L, Iobbi-Nivol C, Bordi C. Connected partner-switches control the life style of Pseudomonas aeruginosa through RpoS regulation. Sci Rep. 2019 Apr 24;9(1):6496. doi: 10.1038/s41598-019-42653-5. PMID: 31019225; PMCID: PMC6482189.spa
dc.relation.referencesCooke AC, Florez C, Dunshee EB, Lieber AD, Terry ML, Light CJ, Schertzer JW. Pseudomonas Quinolone Signal-Induced Outer Membrane Vesicles Enhance Biofilm Dispersion in Pseudomonas aeruginosa. mSphere. 2020 Nov 25;5(6): e01109-20. doi: 10.1128/mSphere.01109-20. PMID: 33239369; PMCID: PMC7690959.spa
dc.relation.referencesSchuster M, Greenberg EP. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol. 2006 Apr;296(2-3):73-81. doi: 10.1016/j.ijmm.2006.01.036. Epub 2006 Feb 14. PMID: 16476569.spa
dc.relation.referencesRather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol. 2021 Dec;52(4):1701-1718. doi: 10.1007/s42770-021-00624-x. Epub 2021 Sep 23. PMID: 34558029; PMCID: PMC8578483.spa
dc.relation.referencesHøiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010 Apr;35(4):322-32. doi: 10.1016/j.ijantimicag.2009.12.011. Epub 2010 Feb 10. PMID: 20149602.spa
dc.relation.referencesHall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017 May 1;41(3):276-301. doi: 10.1093/femsre/fux010. PMID: 28369412.spa
dc.relation.referencesHancock RE, Speert DP. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat. 2000 Aug;3(4):247-255. doi: 10.1054/drup.2000.0152. PMID: 11498392.spa
dc.relation.referencesQin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022 Jun 25;7(1):199. doi: 10.1038/s41392-022-01056-1. PMID: 35752612; PMCID: PMC9233671.spa
dc.relation.referencesBreidenstein EB, de la Fuente-Núñez C, Hancock RE. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol. 2011 Aug;19(8):419-26. doi: 10.1016/j.tim.2011.04.005. Epub 2011 Jun 12. PMID: 21664819.spa
dc.relation.referencesCLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100., editor. Wayne, PA: Clinical and Laboratory Standards Institute. 2022; 1-332. https://clsi.org/standards/products/microbiology/documents/m100/spa
dc.relation.referencesSong F, Wang H, Sauer K, Ren D. Cyclic-di-GMP and oprF Are Involved in the Response of Pseudomonas aeruginosa to Substrate Material Stiffness during Attachment on Polydimethylsiloxane (PDMS). Front Microbiol. 2018 Feb 1; 9:110. doi: 10.3389/fmicb.2018.00110. PMID: 29449837; PMCID: PMC5799285.spa
dc.relation.referencesYoung ML, Bains M, Bell A, Hancock RE. Role of Pseudomonas aeruginosa outer membrane protein OprH in polymyxin and gentamicin resistance: isolation of an OprH-deficient mutant by gene replacement techniques. Antimicrob Agents Chemother. 1992 Nov;36(11):2566-8. doi: 10.1128/AAC.36.11.2566. PMID: 1336952; PMCID: PMC284378.spa
dc.relation.referencesBomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O'Toole GA, Stanton BA. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog. 2009 Apr;5(4): e1000382. doi: 10.1371/journal.ppat.1000382. Epub 2009 Apr 10. PMID: 19360133; PMCID: PMC2661024.spa
dc.relation.referencesLi XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev. 2015 Apr;28(2):337-418. doi: 10.1128/CMR.00117-14. PMID: 25788514; PMCID: PMC4402952.spa
dc.relation.referencesJeannot K, Elsen S, Köhler T, Attree I, van Delden C, Plésiat P. Resistance and virulence of Pseudomonas aeruginosa clinical strains overproducing the MexCD-OprJ efflux pump. Antimicrob Agents Chemother. 2008 Jul;52(7):2455-62. doi: 10.1128/AAC.01107-07. Epub 2008 May 12. PMID: 18474583; PMCID: PMC2443911.spa
dc.relation.referencesGuénard S, Muller C, Monlezun L, Benas P, Broutin I, Jeannot K, Plésiat P. Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58(1):221-8. doi: 10.1128/AAC.01252-13. Epub 2013 Oct 21. Erratum in: Antimicrob Agents Chemother. 2014 Mar;58(3):1833. PMID: 24145539; PMCID: PMC3910787.spa
dc.relation.referencesBiswas R, Panja AS, Bandopadhyay R. Molecular Mechanism of Antibiotic Resistance: The Untouched Area of Future Hope. Indian J Microbiol. 2019 Jun;59(2):254-259. doi: 10.1007/s12088-019-00781-6. Epub 2019 Jan 22. PMID: 31031444; PMCID: PMC6458223.spa
dc.relation.referencesRafiee R, Eftekhar F, Tabatabaei SA, Minaee Tehrani D. Prevalence of extended-spectrum and metallo β-lactamase production in ampc β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol. 2014 Sep;7(9): e16436. doi: 10.5812/jjm.16436. Epub 2014 Sep 23. PMID: 25485066; PMCID: PMC4255381.spa
dc.relation.referencesPaterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005 Oct;18(4):657-86. doi: 10.1128/CMR.18.4.657-686.2005. PMID: 16223952; PMCID: PMC1265908.spa
dc.relation.referencesRawat D, Nair D. Extended-spectrum β-lactamases in Gram Negative Bacteria. J Glob Infect Dis. 2010 Sep;2(3):263-74. doi: 10.4103/0974-777X.68531. PMID: 20927289; PMCID: PMC2946684.spa
dc.relation.referencesRamirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010 Dec;13(6):151-71. doi: 10.1016/j.drup.2010.08.003. Epub 2010 Sep 15. PMID: 20833577; PMCID: PMC2992599.spa
dc.relation.referencesRatjen F, Brockhaus F, Angyalosi G. Aminoglycoside therapy against Pseudomonas aeruginosa in cystic fibrosis: a review. J Cyst Fibros. 2009 Dec;8(6):361-9. doi: 10.1016/j.jcf.2009.08.004. Epub 2009 Sep 10. PMID: 19747887.spa
dc.relation.referencesHainrichson M, Yaniv O, Cherniavsky M, Nudelman I, Shallom-Shezifi D, Yaron S, Baasov T. Overexpression and initial characterization of the chromosomal aminoglycoside 3'-O-phosphotransferase APH (3')-IIb from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2007 Feb;51(2):774-6. doi: 10.1128/AAC.01034-06. Epub 2006 Nov 6. PMID: 17088479; PMCID: PMC1797760.spa
dc.relation.referencesPoole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005 Feb;49(2):479-87. doi: 10.1128/AAC.49.2.479-487.2005. PMID: 15673721; PMCID: PMC547279.spa
dc.relation.referencesSubedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin Exp Optom. 2018 Mar;101(2):162-171. doi: 10.1111/cxo.12621. Epub 2017 Oct 18. PMID: 29044738.spa
dc.relation.referencesPang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019 Jan-Feb;37(1):177-192. doi: 10.1016/j.biotechadv.2018.11.013. Epub 2018 Nov 27. PMID: 30500353.spa
dc.relation.referencesMunita, José M., and Cesar A. Arias. "Mechanisms of antibiotic resistance." Microbiology spectrum 4.2 (2016): 4-2.spa
dc.relation.referencesHenrichfreise, B., Wiegand, I., Pfister, W., & Wiedemann, B. (2007). Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrobial agents and chemotherapy, 51(11), 4062-4070.spa
dc.relation.referencesFang ZL, Zhang LY, Huang YM, Qing Y, Cao KY, Tian GB, Huang X. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China. Infect Genet Evol. 2014 Jan; 21:124-8. doi: 10.1016/j.meegid.2013.10.027. Epub 2013 Nov 8. PMID: 24211415.spa
dc.relation.referencesLi H, Luo YF, Williams BJ, Blackwell TS, Xie CM. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol. 2012 Mar;302(2):63-8. doi: 10.1016/j.ijmm.2011.10.001. Epub 2012 Jan 5. PMID: 22226846; PMCID: PMC3831278.spa
dc.relation.referencesBerrazeg M, Jeannot K, Ntsogo Enguéné VY, Broutin I, Loeffert S, Fournier D, Plésiat P. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrob Agents Chemother. 2015 Oct;59(10):6248-55. doi: 10.1128/AAC.00825-15. Epub 2015 Jul 27. PMID: 26248364; PMCID: PMC4576058.spa
dc.relation.referencesF. El’Garch, K. Jeannot, D. Hocquet, C. Llanes-Barakat, P. Plesiat. "Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides." Antimicrobial agents and chemotherapy 51.3 (2007): 1016-1021.spa
dc.relation.referencesMoyá, B., Beceiro, A., Cabot, G., Juan, C., Zamorano, L., Alberti, S., & Oliver, A. "Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities." Antimicrobial agents and chemotherapy 56.9 (2012): 4771-4778.spa
dc.relation.referencesChen, J., Su, Z., Liu, Y., Wang, S., Dai, X., Li, Y., ... & Xu, H. "Identification and characterization of class 1 integrons among Pseudomonas aeruginosa isolates from patients in Zhenjiang, China." International Journal of Infectious Diseases 13.6 (2009): 717-721.spa
dc.relation.referencesRobert A. Bonomo, Dora Szabo, Mechanisms of Multidrug Resistance in Acinetobacter Species and Pseudomonas aeruginosa, Clinical Infectious Diseases, Volume 43, Issue Supplement_2, September 2006, Pages S49–S56, https://doi.org/10.1086/504477.spa
dc.relation.referencesHong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect Chemother. 2015 Jun;47(2):81-97. doi: 10.3947/ic.2015.47.2.81. Epub 2015 Jun 30. PMID: 26157586; PMCID: PMC4495280.spa
dc.relation.referencesSandoval‐Motta, S., & Aldana, M. "Adaptive resistance to antibiotics in bacteria: a systems biology perspective." Wiley Interdisciplinary Reviews: Systems Biology and Medicine 8.3 (2016): 253-267.spa
dc.relation.referencesTaylor PK, Yeung AT, Hancock RE. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol. 2014 Dec 10; 191:121-30. doi: 10.1016/j.jbiotec.2014.09.003. Epub 2014 Sep 18. PMID: 25240440.spa
dc.relation.referencesDas, Theerthankar, Shama Sehar, and Mike Manefield. "The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biopelícula development." Environmental microbiology reports 5.6 (2013): 778-786.spa
dc.relation.referencesT. Rasamiravaka, Q. Labtani, P. Duez, M. El Jaziri. The formation of biopelículas by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int, 2015 (2015), p. 759348.spa
dc.relation.referencesDrenkard, Eliana. "Antimicrobial resistance of Pseudomonas aeruginosa biopelículas." Microbes and infection 5.13 (2003): 1213-1219.spa
dc.relation.referencesWalters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003 Jan;47(1):317-23. doi: 10.1128/AAC.47.1.317-323.2003. PMID: 12499208; PMCID: PMC148957.spa
dc.relation.referencesNomura K, Obata K, Keira T, Miyata R, Hirakawa S, Takano K, Kohno T, Sawada N, Himi T, Kojima T. Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells. Respir Res. 2014 Feb 18;15(1):21. doi: 10.1186/1465-9921-15-21. PMID: 24548792; PMCID: PMC3936699.spa
dc.relation.referencesBastaert F, Kheir S, Saint-Criq V, Villeret B, Dang PM, El-Benna J, Sirard JC, Voulhoux R, Sallenave JM. Pseudomonas aeruginosa LasB Subverts Alveolar Macrophage Activity by Interfering with Bacterial Killing Through Downregulation of Innate Immune Defense, Reactive Oxygen Species Generation, and Complement Activation. Front Immunol. 2018 Jul 23; 9:1675. doi: 10.3389/fimmu.2018.01675. PMID: 30083156; PMCID: PMC6064941.spa
dc.relation.referencesMaisonneuve E, Gerdes K. Molecular mechanisms underlying bacterial persisters. Cell. 2014 Apr 24;157(3):539-48. doi: 10.1016/j.cell.2014.02.050. PMID: 24766804.spa
dc.relation.referencesMlynarcik P, Kolar M. Starvation- and antibiotics-induced formation of persister cells in Pseudomonas aeruginosa. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017 Mar;161(1):58-67. doi: 10.5507/bp.2016.057. Epub 2016 Nov 23. PMID: 27886280.spa
dc.relation.referencesMöker N, Dean CR, Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol. 2010 Apr;192(7):1946-55. doi: 10.1128/JB.01231-09. Epub 2010 Jan 22. PMID: 20097861; PMCID: PMC2838031.spa
dc.relation.referencesGarcía-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, Canton R, Martinez-García MA. Impact of Pseudomonas aeruginosa Infection on Patients with Chronic Inflammatory Airway Diseases. J Clin Med. 2020 nov 24;9(12):3800. doi: 10.3390/jcm9123800. PMID: 33255354; PMCID: PMC7760986.spa
dc.relation.referencesSawa, T., Kooguchi, K. & Moriyama, K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. j intensive care 8, 13 (2020). https://doi.org/10.1186/s40560-020-0429-6spa
dc.relation.referencesDrawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010 Jan;23(1):160-201. doi: 10.1128/CMR.00037-09. PMID: 20065329; PMCID: PMC2806661.spa
dc.relation.referencesEspinoza Pesantez Diana Isabel, Esparza Sánchez German Francisco. Resistencia enzimática en Pseudomonas aeruginosa, aspectos clínicos y de laboratorio. Rev. chil. infectol. [Internet]. 2021 feb [citado 2021 Nov 24]; 38(1): 69-80. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S071610182021000100069&lng=es. http://dx.doi.org/10.4067/S0716-10182021000100069spa
dc.relation.referencesVillegas M V, Zurita J, Esparza G. Guía para la implementación de un programa de optimización de antimicrobianos (PROA) a nivel hospitalario. Asociación Panamericana de Infectología 2016; 1-91. https://www.apiinfectologia.org/guia-para-la-implementacion-del-proa-a-nivel-hospitalario/spa
dc.relation.referencesCodjoe FS, Donkor ES. Carbapenem Resistance: A Review. Med Sci (Basel). 2017 Dec 21;6(1):1. doi: 10.3390/medsci6010001. PMID: 29267233; PMCID: PMC5872158.spa
dc.relation.referencesPerez F, Van Duin D. Carbapenem-resistant Enterobacteriaceae: a menace to our most vulnerable patients. Cleve Clin J Med. 2013 Apr;80(4):225-33. doi: 10.3949/ccjm. 80a.12182. PMID: 23547093; PMCID: PMC3960994.spa
dc.relation.referencesNordmann P, Poirel L. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect. 2002 jun;8(6):321-31. doi: 10.1046/j.1469-0691.2002.00401. x. PMID: 12084099.spa
dc.relation.referencesToleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, Walsh TR. Molecular characterization of SPM-1, a novel metallo-beta-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother. 2002 nov;50(5):673-9. doi: 10.1093/jac/dkf210. PMID: 12407123.spa
dc.relation.referencesPoirel L, Hombrouck-Alet C, Freneaux C, Bernabeu S, Nordmann P. Global spread of New Delhi metallo-β-lactamase 1. Lancet Infect Dis. 2010 Dec;10(12):832. doi: 10.1016/S1473-3099(10)70279-6. PMID: 21109172.spa
dc.relation.referencesHorcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019 Aug 28; 32(4): e00031-19. doi: 10.1128/CMR.00031-19. PMID: 31462403; PMCID: PMC6730496.spa
dc.relation.referencesWorld Health Organization. WHO Strategic Priorities on Antimicrobial Resistance. 2022spa
dc.relation.referencesCDC. Antibiotic Resistance Threats in the United States, 2019. Centers for Disease Control and Prevention; Atlanta, GA, USA: 2019.spa
dc.relation.referencesCassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ, Suetens C, Monnet DL; Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019 Jan;19(1):56-66. doi: 10.1016/S1473-3099(18)30605-4. Epub 2018 Nov 5. PMID: 30409683; PMCID: PMC6300481.spa
dc.relation.referencesNathwani D, Raman G, Sulham K, Gavaghan M, Menon V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2014 Oct 20;3(1):32. doi: 10.1186/2047-2994-3-32. PMID: 25371812; PMCID: PMC4219028spa
dc.relation.referencesKaier K, Heister T, Götting T, Wolkewitz M, Mutters NT. Measuring the in-hospital costs of Pseudomonas aeruginosa pneumonia: methodology and results from a German teaching hospital. BMC Infect Dis. 2019 Dec 3;19(1):1028. doi: 10.1186/s12879-019-4660-5. PMID: 31795953; PMCID: PMC6888947.spa
dc.relation.referencesCiofu O, Tolker-Nielsen T. Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents-How P. aeruginosa Can Escape Antibiotics. Front Microbiol. 2019 May 3; 10:913. doi: 10.3389/fmicb.2019.00913. PMID: 31130925; PMCID: PMC6509751.spa
dc.relation.referencesYin R, Cheng J, Wang J, Li P, Lin J. Treatment of Pseudomonas aeruginosa infectious biofilms: Challenges and strategies. Front Microbiol. 2022 Aug 26; 13:955286. doi: 10.3389/fmicb.2022.955286. PMID: 36090087; PMCID: PMC9459144.spa
dc.relation.referencesLansbury, L., Lim, B., Baskaran, V., & Lim, W. S. (2020). Co-infections in people with COVID-19: a systematic review and meta-analysis. Journal of Infection, 81(2), 266-275.spa
dc.relation.referencesWeiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM. Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. Infect Control Hosp Epidemiol. 2016 Nov;37(11):1288-1301. doi: 10.1017/ice.2016.174. Epub 2016 Aug 30. PMID: 27573805; PMCID: PMC6857725.spa
dc.relation.referencesTenover FC, Nicolau DP, Gill CM. Carbapenemase-producing Pseudomonas aeruginosa -an emerging challenge. Emerg Microbes Infect. 2022 Dec;11(1):811-814. doi: 10.1080/22221751.2022.2048972. PMID: 35240944; PMCID: PMC8920394.spa
dc.relation.referencesWalters MS, Grass JE, Bulens SN, Hancock EB, Phipps EC, Muleta D, Mounsey J, Kainer MA, Concannon C, Dumyati G, Bower C, Jacob J, Cassidy PM, Beldavs Z, Culbreath K, Phillips WE Jr, Hardy DJ, Vargas RL, Oethinger M, Ansari U, Stanton R, Albrecht V, Halpin AL, Karlsson M, Rasheed JK, Kallen A. Carbapenem-Resistant Pseudomonas aeruginosa at US Emerging Infections Program Sites, 2015. Emerg Infect Dis. 2019 jul;25(7):1281-1288. doi: 10.3201/eid2507.181200. PMID: 31211681; PMCID: PMC6590762.spa
dc.relation.referencesEscandón-Vargas K, Reyes S, Gutiérrez S, Villegas MV. The epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther. 2017 Mar;15(3):277-297. doi: 10.1080/14787210.2017.1268918. Epub 2016 Dec 20. PMID: 27915487.spa
dc.relation.referencesSimner PJ, Opene BNA, Chambers KK, Naumann ME, Carroll KC, Tamma PD. Carbapenemase Detection among Carbapenem-Resistant Glucose-Nonfermenting Gram-Negative Bacilli. J Clin Microbiol. 2017 Sep;55(9):2858-2864. doi: 10.1128/JCM.00775-17. Epub 2017 Jul 12. PMID: 28701421; PMCID: PMC5648721.spa
dc.relation.referencesRoy Chowdhury P, Scott MJ, Djordjevic SP. Genomic islands 1 and 2 carry multiple antibiotic resistance genes in Pseudomonas aeruginosa ST235, ST253, ST111 and ST175 and are globally dispersed. J Antimicrob Chemother. 2017 Feb;72(2):620-622. doi: 10.1093/jac/dkw471. Epub 2016 Dec 20. PMID: 27999026.spa
dc.relation.referencesYoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol. 2021 Feb 18; 12:614058. doi: 10.3389/fmicb.2021.614058. PMID: 33679638; PMCID: PMC7930500.spa
dc.relation.referencesLister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009 Oct;22(4):582-610. doi: 10.1128/CMR.00040-09. PMID: 19822890; PMCID: PMC2772362.spa
dc.relation.referencesTaccetti G, Campana S, Festini F, Mascherini M, Döring G. Early eradication therapy against Pseudomonas aeruginosa in cystic fibrosis patients. Eur Respir J. 2005 Sep;26(3):458-61. doi: 10.1183/09031936.05.00009605. PMID: 16135728.spa
dc.relation.referencesPitten FA, Panzig B, Schröder G, Tietze K, Kramer A. Transmission of a multiresistant Pseudomonas aeruginosa strain at a German University Hospital. J Hosp Infect. 2001 Feb;47(2):125-30. doi: 10.1053/jhin.2000.0880. PMID: 11170776.spa
dc.relation.referencesOrganización Panamericana de la Salud. Informe Anual de la Red de Monitoreo/Vigilancia de la Resistencia a los Antibióticos. A 2019. [Internet] 2019. Fecha de consulta: 29 junio de 2022. Disponible en: https://www3.paho.org/data/index.php/es/temas/resistenciaantimicrobiana/567 amr-vig-es.htmlspa
dc.relation.referencesMurray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. febrero de 2022;399(10325):629-55.spa
dc.relation.referencesRada AM, De La Cadena E, Agudelo CA, Pallares C, Restrepo E, Correa A, Villegas MV, Capataz C. Genetic Diversity of Multidrug-Resistant Pseudomonas aeruginosa Isolates Carrying blaVIM-2 and blaKPC-2 Genes That Spread on Different Genetic Environment in Colombia. Front Microbiol. 2021 Aug 27; 12:663020. doi: 10.3389/fmicb.2021.663020. PMID: 34512563; PMCID: PMC8432936.spa
dc.relation.referencesMemorias Reunión de expertos carga de la resistencia antimicrobiana en Colombia. Instituto Nacional de Salud, Observatorio Nacional de Salud, Bogotá, D.C., 2022spa
dc.relation.referencesPerfil epidemiológico. Primer semestre 2022. ESE Hospital Universitario Erasmo Meozhttps://herasmomeoz.gov.co/spa
dc.relation.referencesESE Hospital Universitario Erasmo Meozhttps://herasmomeoz.gov.co/spa
dc.relation.referencesPerozo Mena Armindo José, Castellano González Maribel Josefina, Chávez Kathyuska Tutaya, Ling Toledo Eliana, Arraiz Nailet. Evaluación de métodos fenotípicos para la detección de metalobetalactamasas en aislados clínicos de Pseudomonas aeruginosa. Kasmera [Internet]. 2013 dic [citado 2022 Oct 18]; 41(2): 115-126. Disponible en: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0075-52222013000200004&lng=esspa
dc.relation.referencesBea Rde L, Petraglia AF, Johnson LE. Synthesis, antimicrobial activity and toxicity of analogs of the scorpion venom BmKn peptides. Toxicon: official journal of the International Society on Toxinology. 2015; 101:79-84.spa
dc.relation.referencesIbáñez Lida, Barreto-Santamaría Adriana, Arévalo-Pinzón Gabriela. Evaluación de la actividad anti-biopelícula de péptidos sintéticos contra aislados clínicos MDR de Pseudomonas aeruginosa. Universidad Colegio Mayor de Cundinamarca;2023.spa
dc.relation.referencesOvalle, María Victoria, Saavedra, Sandra Yamile, González, María Nilse, Hidalgo, Andrea Melissa, Duarte, Carolina, & Beltrán, Mauricio. (2017). Resultados de la vigilancia nacional de la resistencia antimicrobiana de enterobacterias y bacilos Gram negativos no fermentadores en infecciones asociadas a la atención de salud, Colombia, 2012-2014. Biomédica, 37(4), 473-485. https://doi.org/10.7705/biomedica.v34i2.3432spa
dc.relation.referencesSalud INd. VIGILANCIA POR LABORATORIO DE RESISTENCIA ANTIMICROBIANA EN INFECCIONES ASOCIADAS A LA ATENCION EN SALUD (IAAS) COLOMBIA, AÑO 2016 A 2019. https:// www.ins.gov.co/BibliotecaDigital/vigilancia-por-laboratorio-de-resistencia-antimicrobiana-en-iaas-en-colombia-2016-2019.pdfspa
dc.relation.referencesMirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi HAA, Jeda AS, Dashtbin S, Jalalifar S, Mohammadzadeh R, Teimoori A, Tari K, Salari M, Ghiasvand S, Kazemi S, Yousefimashouf R, Keyvani H, Karampoor S. Bacterial co-infections with SARS-CoV-2. IUBMB Life. 2020 oct;72(10):2097-2111. doi: 10.1002/iub.2356. Epub 2020 Aug 8. PMID: 32770825; PMCID: PMC7436231.spa
dc.relation.referencesParker CM, Kutsogiannis J, Muscedere J, Cook D, Dodek P, Day AG, Heyland DK; Canadian Critical Care Trials Group. Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: prevalence, incidence, risk factors, and outcomes. J Crit Care. 2008 Mar;23(1):18-26. doi: 10.1016/j.jcrc.2008.02.001. PMID: 18359417.spa
dc.relation.referencesMagill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, Lynfield R, Maloney M, McAllister-Hollod L, Nadle J, Ray SM, Thompson DL, Wilson LE, Fridkin SK; Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014 Mar 27;370(13):1198-208. doi: 10.1056/NEJMoa1306801. Erratum in: N Engl J Med. 2022 jun 16;386(24):2348. PMID: 24670166; PMCID: PMC4648343.spa
dc.relation.referencesSadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005 Jun 1;171(11):1209-23. doi: 10.1164/rccm.200408-1044SO. Epub 2005 Feb 1. PMID: 15695491; PMCID: PMC2718459.spa
dc.relation.referencesPatel G, Bonomo RA. Status report on carbapenemases: challenges and prospects. Expert Rev Anti Infect Ther. 2011 May;9(5):555-70. doi: 10.1586/eri.11.28. PMID: 21609267.spa
dc.relation.referencesvan der Zee A, Kraak WB, Burggraaf A, Goessens WHF, Pirovano W, Ossewaarde JM, Tommassen J. Spread of Carbapenem Resistance by Transposition and Conjugation Among Pseudomonas aeruginosa. Front Microbiol. 2018 Sep 5; 9:2057. doi: 10.3389/fmicb.2018.02057. PMID: 30233535; PMCID: PMC6133989.spa
dc.relation.referencesCarrara-Marroni FE, Cayô R, Streling AP, da Silva AC, Palermo RL, Romanin P, Venâncio E, Perugini MR, Pelisson M, Gales AC. Emergence and spread of KPC-2-producing Pseudomonas aeruginosa isolates in a Brazilian teaching hospital. J Glob Antimicrob Resist. 2015 Dec;3(4):304-306. doi: 10.1016/j.jgar.2015.07.002. Epub 2015 Aug 8. PMID: 27842880.spa
dc.relation.referencesTacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N; WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018 Mar;18(3):318-327. doi: 10.1016/S1473-3099(17)30753-3. Epub 2017 Dec 21. PMID: 29276051.spa
dc.relation.referencesSalud OMdl. PLAN DE ACCIÓN MUNDIAL SOBRE LA RESISTENCIA A LOS ANTIMICROBIANOS 2016(WHO Document Production Services, Geneva, Switzerland):30spa
dc.relation.referencesYahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev. 2020 Nov 11;34(1): e00115-20. doi: 10.1128/CMR.00115-20. Erratum in: Clin Microbiol Rev. 2021 Jan 27;34(2): PMID: 33177185; PMCID: PMC7667665.spa
dc.relation.referencesMartínez MJ, García MI, Sánchez EG, Sánchez JE. Los carbapenems disponibles: Propiedades y diferencias [Available carbapenems: Properties and differences]. Enferm Infecc Microbiol Clin. 2010 Sep;28 Suppl 2:53-64. Spanish. doi: 10.1016/S0213-005X (10)70031-8. PMID: 21130931.spa
dc.relation.referencesCataño-Correa JC, Cardona-Arias JA, Porras Mancilla JP, García MT. Bacterial superinfection in adults with COVID-19 hospitalized in two clinics in Medellín-Colombia, 2020. PLoS One. 2021 jul 13;16(7): e0254671. doi: 10.1371/journal.pone.0254671. PMID: 34255801; PMCID: PMC8277025.spa
dc.relation.referencesLoayza-Alarico, Manuel J. (2019). Migración y los efectos en la salud pública. Revista de la Facultad de Medicina Humana, 19(4), 10-11. https://dx.doi.org/10.25176/RFMH.v19i4.2334spa
dc.relation.referencesCendra MDM, Torrents E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol Adv. 2021 jul-Aug; 49:107734. doi: 10.1016/j.biotechadv.2021.107734. Epub 2021 Mar 27. PMID: 33785375.spa
dc.relation.referencesLee K, Yoon SS. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness. J Microbiol Biotechnol. 2017 jun 28;27(6):1053-1064. doi: 10.4014/jmb.1611.11056. PMID: 28301918.spa
dc.relation.referencesRossi Gonçalves I, Dantas RCC, Ferreira ML, Batistão DWDF, Gontijo-Filho PP, Ribas RM. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol. 2017 Apr-Jun;48(2):211-217. doi: 10.1016/j.bjm.2016.11.004. Epub 2016 Nov 26. PMID: 28034598; PMCID: PMC5470431.spa
dc.relation.referencesGellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013 Apr;67(3):159-73. doi: 10.1111/2049-632X.12033. Epub 2013 Mar 15. PMID: 23620179.spa
dc.relation.referencesCho HH, Kwon KC, Kim S, Park Y, Koo SH. Association between Biofilm Formation and Antimicrobial Resistance in Carbapenem-Resistant Pseudomonas aeruginosa. Ann Clin Lab Sci. 2018 May;48(3):363-368. PMID: 29970441.spa
dc.relation.referencesBezzerri V, d'Adamo P, Rimessi A, Lanzara C, Crovella S, Nicolis E, Tamanini A, Athanasakis E, Tebon M, Bisoffi G, Drumm ML, Knowles MR, Pinton P, Gasparini P, Berton G, Cabrini G. Phospholipase C-β3 is a key modulator of IL-8 expression in cystic fibrosis bronchial epithelial cells. J Immunol. 2011 Apr 15;186(8):4946-58. doi: 10.4049/jimmunol.1003535. Epub 2011 Mar 16. PMID: 21411730; PMCID: PMC4166552.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalPseudomonas aeruginosaspa
dc.subject.proposalBiopelículasspa
dc.subject.proposalResistencia antibióticaspa
dc.subject.proposalMecanismos de resistenciaspa
dc.subject.proposalCarbapenemasasspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024