Show simple item record

dc.contributor.advisorLópez Pazos, Silvio Alejandro
dc.contributor.advisorEstupiñán Torres, Sandra Mónica
dc.contributor.authorBeltrán Duque, María Angie
dc.date.accessioned2021-06-02T20:00:46Z
dc.date.available2021-06-02T20:00:46Z
dc.date.issued2020-05
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/147
dc.description.abstractLos xenobióticos son compuestos químicos no son naturales como fertilizantes, pesticidas, tintes, dioxinas, bifenilos policlorados o hidrocarburos poliaromáticos; contaminantes, afectan a los seres vivos porque no hacen parte de rutas metabólicas celulares, y son recalcitrantes. En la agricultura se usan xenobióticos como aldrin, dieldrina, endrina, Clordano, Heptacloro-Hexaclorobenceno, glifosato y DDT. Algunos microorganismos capaces de degradar xenobióticos son especies de Pseudomonas y Bacillus con potencial para biodegradación y biorremediación. P. extremaustralis, B. subtilis y B. thuringiensis poseen enzimas de uso biotecnológico. Hasta el 50% de las proteínas de su genoma se consideran hipotéticas de función desconocida, que pueden desempeñar funciones en procesos de adaptación. Este trabajo tiene como objetivo reconocer la posible presencia de proteínas de P. extremaustralis CMPUJ U515, B. subtilis ATCC6633 y B. thuringiensis kurstaki HD-1 que se expresan en condiciones de estrés, incluyendo degradación de xenobióticos. Haciendo uso de tBLASTn (E < 8e-17/ identidad >40% /cobertura >83%) se determinaron enzimas relacionadas con degradación de compuestos xenobióticos, igual que las enzimas glifosato oxidorreductasa o glicina oxidasa involucradas en la vía AMPA y la enzima fosfatasa específica C-P liasa las cuales están asociadas a la capacidad de tomar glifosato como única fuente de carbono o fosforo respectivamente. Las cepas se sometieron a estrés mediado por antibióticos para determinar la posible síntesis de proteínas de choque térmico GroEL/ES identificándose la posible síntesis de GroES (10 kDa). Este trabajo permite comprender mejor mecanismos por los cuales las bacterias se adaptan a ambientes de estrés y permiten identificar su potencial para Biotecnología ambiental.spa
dc.description.tableofcontents1. Título 11 Resumen 11 Introducción12 Objetivos 14 Marco teórico 15 Antecedentes 15 5.3 Pseudomonas extremaustralis 24 5.4 Bacillus subtilis 25 5.5 Bacillus thuringiensis 25 5.6 Proteínas hipotéticas 25 5.7 Xenobióticos en la agricultura 26 5.7.1 Características generales del glifosato 27 5.7.1.1 Propiedades fisicoquímicas del glifosato 27 5.7.1.2 Mecanismos de acción 28 5.8 Biorremediación por Pseudomonas extremaustralis, Bacillus subtilis y Bacillus thuringiensis 29 5.9 Proteínas de shock térmico 30 Metodología 32 Tipo de investigación 32 Universo, población y muestra 32 Universo 32 Población 32 Muestra 32 6.3. Variables 32 Variables independientes 32 Variables dependientes 32 6.4. Hipótesis 33 Hipótesis nula 33 Hipótesis alterna 33 6.5. Indicadores 33 6.6. Técnicas y procedimientos 33 7 Resultados 36 8. Discusión 44 9 Conclusiones 56 10. Bibliografía 58spa
dc.format.extent92p.spa
dc.format.mimetypeapplication/pdfspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleEstudio de pseudomonas extremaustralis CMPUJ U515, Bacillus Subtilis ATCC 6633 y Bacillus Thuringiensis Kurstaki HD-1 en relación a estrés: Xenobióticos y Glifosfatospa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.C.spa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesSingh A., Chaudhary S., Dubey B., Prasad V. Microbial-Mediated Management of Organic Xenobiotic Pollutants in Agricultural Lands. Plant Responses to Xenobiotics. 2016, págs. 211-230.spa
dc.relation.referencesArias E V, Rodriguez AR , Bardos P , Naidu R. Contaminated land in Colombia: A critical review of current status and future approach for the management of contaminated sites. Science of The Total Environment. 2018, Vol. 618, págs. 199-209.spa
dc.relation.referencesPanorama de biorremediacion en Colombia . Invermar.spa
dc.relation.referencesGomez LE, Henao A. La problematica de los plaguicidas en Colombia. Caso Roundop- Arma binaria de guerra . 2017, Vol. 1.spa
dc.relation.referencesSatapute P, Paidi MK, Kurjogi M, Jogaiah S. Physiological adaptation and spectral annotation of Arsenic and Cadmium heavy metal-resistant and susceptible strain Pseudomonas taiwanensis. Environmental Pollution. Agosto de 2019, Vol. 251, págs. 555-563.spa
dc.relation.referencesErrington J., Wu LJ. Cell Cycle Machinery en Bacillus subtilis. Subcellular Biochemistry. 2017, Vol. 84, págs. 45-65spa
dc.relation.referencesAlmeida AL, Soccol VT y Soccol CR. Bacillus thuringiensis : mecanismo de acción, resistencia y nuevas aplicaciones: una revisión. Critical Reviews in Biotechnology. 2016, Vol. 36, págs. 317-326.spa
dc.relation.referencesHove-Jensen B, Zechel DL and Jochimsen B. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase. Microbiology and Molecular Biology Reviews. 2014, Vol. 74, págs. 176-197.spa
dc.relation.referencesDesler C, Suravajhala P, Sanderhoff M, Rasmussen M and Rasmussen LJ. In Silico screening for functional candidates amongst hypothetical proteins. BMC Bioinformatics. 16 de Septiembre de 2009, pág. 289.spa
dc.relation.referencesIjaq J, Malik G, Kumar A. et al. A model to predict the function of hypothetical proteins through a nine-point classification scoring schema. BMC Bioinformatics . 2019, Vol. 14.spa
dc.relation.referencesBateman A, Coggill P and Finn RD. DUFs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010, págs. 1148-1152.spa
dc.relation.referencesFinn RD 1, Bateman A , Clements J , Coggill P , Eberhardt RY. et al. Pfam: the protein families database. Nucleic Acids Research. 2014, Vol. 42.spa
dc.relation.referencesGough J, Karplus K , Hughey R and Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. Journal of Molecular Biology. 2001, Vol. 313.spa
dc.relation.referencesHanson AD, Pribat A , Waller JC , and Crécy-Lagard V . 'Unknown' proteins and 'orphan' enzymes: the missing half of the engineering parts list--and how to find it. Biochem J. 2009, pág. 425.spa
dc.relation.referencesFT, Techtmann SM y Robb. Archaeal-like chaperonins in bacteria. Proceedings of the National Academy of Sciences of the United States of America. 2010, Vol. 47. 16. Weiss C, Jebara F, Nisemblat S, and Azem A. Dynamic Complexes in the Chaperonin-Mediated Protein Folding Cycle. Frontiers in molecular biosciences. 2016, Vol. 3.spa
dc.relation.referencesMulder, Gaston K. Mazandu and Nicola J. Function Prediction and Analysis of Mycobacterium tuberculosis Hypothetical Proteins. Int J Mol Sci. 2012, págs. 7283- 7302.spa
dc.relation.referencesAislabie J, Saul DJ and Foght JM . Bioremediation of hydrocarbon-contaminated polar soils. Extremófilos. 2006, Vol. 10, 3, págs. 171-179.spa
dc.relation.referencesRayu S, Nielsen UN, Nazaries L, Singh BK. Isolation and Molecular Characterization of Novel Chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading Bacteria from Sugarcane Farm Soils. Front Microbiol. 2017.spa
dc.relation.referencesLópez NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M, Steinbüchel A and Méndez BS. Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) producer isolated from an antarctic environment. Current Microbiology. 2009, Vol. 59, págs. 514-519.spa
dc.relation.referencesRaiger Iustman LJ, Tribelli PM, Ibarra JG, Catone MV, Solar Venero EC and López NI. Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremófilos. 2015, Vol. 19, 1, págs. 207-220.spa
dc.relation.referencesTribelli PM, Solar EC, Ricardi MM, Gómez M, Raiger LJ, Molin S, and López NI. Novel Essential Role of Ethanol Oxidation Genes at Low Temperature Revealed by Transcriptome Analysis in the Antarctic Bacterium Pseudomonas extremaustralis. PLoS One. 2015.spa
dc.relation.referencesLópez G, Diaz C, Shapiro N,Woyke T, Kyrpides NC,Alzate JD, González LN,Restrepo S, and Baena S. Draft genome sequence of Pseudomonas extremaustralis strain USBA-GBX 515 isolated from Superparamo soil samples in Colombian Andes. Stand Genomic Sci. 2017.spa
dc.relation.referencesNI, Tribelli PM and López. Reporting Key Features in Cold-Adapted Bacteria. Life (Basel). 2018.spa
dc.relation.referencesVásquez F, Higuera S, Pavlov MS, Marshall SH, Olivares PJ. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica. Braz J Microbiol. 2018.spa
dc.relation.referencesColonnella MA, Lizarraga L , Rossi L,, Díaz R , Egoburo D , López NI , Iustman LJR. Effect of copper on diesel degradation in Pseudomonas extremaustralis. Extremophiles. 2019.spa
dc.relation.referencesHuang Y, Xiao L , Li F , Xiao M , Lin D, Long X , Wu Z . Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3- phenoxy Benzoic Acid: A Review. Molecules. 2018.spa
dc.relation.referencesDoolotkeldieva T, Konurbaeva M, Bobusheva S. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environmental Science and Pollution Research. 2018, Vol. 25.spa
dc.relation.referencesPK, Arora. Decoloración del 4-cloro-2-nitrofenol por una bacteria del suelo, Bacillus subtilis RKJ 700. PLOS ONE. 2012.spa
dc.relation.referencesJoo, M.H. & Kim, J.Y. J Korean. Characteristics of crude oil biodegradation by biosurfactant-producing bacterium Bacillus subtilis JK-1. Journal of the Korean Society for Applied Biological Chemistry. 2013, Vol. 56, págs. 193-200.spa
dc.relation.referencesSakthipriya N, Doble M and Sangwai JS. Bioremediation of Coastal and Marine Pollution due to Crude Oil Using a Microorganism Bacillus subtilis. Procedia Engineering. 2015, Vol. 116, págs. 213-220.spa
dc.relation.referencesMontagnolli RN, Lopes PR and Bidoia ED. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environ Monit Assess.spa
dc.relation.referencesJavaid MK, Ashiq M, Tahir M. Potential of Biological Agents in Decontamination of Agricultural Soil. Scientifica (Cairo). 2016.spa
dc.relation.referencesRayu S, Nielsen UN, Nazaries L, Singh BK. Isolation and Molecular Characterization of Novel Chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading Bacteria from Sugarcane Farm Soils. Front Microbiol. 2017.spa
dc.relation.referencesLópez NI, Pettinari MJ, Stackebrandt E, Tribelli PM, Põtter M, Steinbüchel A and Méndez BS. Pseudomonas extremaustralis sp. nov., a Poly(3-hydroxybutyrate) producer isolated from an antarctic environment. Current Microbiology. 2009, Vol. 59, págs. 514-519.spa
dc.relation.referencesRaiger Iustman LJ, Tribelli PM, Ibarra JG, Catone MV, Solar Venero EC and López NI. Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremófilos. 2015, Vol. 19, 1, págs. 207-220.spa
dc.relation.referencesTribelli PM, Solar EC, Ricardi MM, Gómez M, Raiger LJ, Molin S, and López NI. Novel Essential Role of Ethanol Oxidation Genes at Low Temperature Revealed by Transcriptome Analysis in the Antarctic Bacterium Pseudomonas extremaustralis. PLoS One. 2015.spa
dc.relation.referencesLópez G, Diaz C, Shapiro N,Woyke T, Kyrpides NC,Alzate JD, González LN,Restrepo S, and Baena S. Draft genome sequence of Pseudomonas extremaustralis strain USBA-GBX 515 isolated from Superparamo soil samples in Colombian Andes. Stand Genomic Sci. 2017.spa
dc.relation.referencesNI, Tribelli PM and López. Reporting Key Features in Cold-Adapted Bacteria. Life (Basel). 2018.spa
dc.relation.referencesVásquez F, Higuera S, Pavlov MS, Marshall SH, Olivares PJ. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica. Braz J Microbiol. 2018.spa
dc.relation.referencesColonnella MA, Lizarraga L , Rossi L,, Díaz R , Egoburo D , López NI , Iustman LJR. Effect of copper on diesel degradation in Pseudomonas extremaustralis. Extremophiles. 2019.spa
dc.relation.referencesHuang Y, Xiao L , Li F , Xiao M , Lin D, Long X , Wu Z . Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3- phenoxy Benzoic Acid: A Review. Molecules. 2018.spa
dc.relation.referencesDoolotkeldieva T, Konurbaeva M, Bobusheva S. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environmental Science and Pollution Research. 2018, Vol. 25.spa
dc.relation.referencesPK, Arora. Decoloración del 4-cloro-2-nitrofenol por una bacteria del suelo, Bacillus subtilis RKJ 700. PLOS ONE. 2012.spa
dc.relation.references. Joo, M.H. & Kim, J.Y. J Korean. Characteristics of crude oil biodegradation by biosurfactant-producing bacterium Bacillus subtilis JK-1. Journal of the Korean Society for Applied Biological Chemistry. 2013, Vol. 56, págs. 193-200spa
dc.relation.referencesSakthipriya N, Doble M and Sangwai JS. Bioremediation of Coastal and Marine Pollution due to Crude Oil Using a Microorganism Bacillus subtilis. Procedia Engineering. 2015, Vol. 116, págs. 213-220.spa
dc.relation.referencesMontagnolli RN, Lopes PR and Bidoia ED. Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environ Monit Assess.spa
dc.relation.referencesXiao Y, Chen S, Gao Y, Hu W, Hu M, Zhong G. Isolation of a novel betacypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Applied Microbiology and Biotechnology. 2015, Vol. 99.spa
dc.relation.referencesSafdari, MS., Kariminia, HR., Ghobadi Nejad, Z. et al. Study Potential of Indigenous Pseudomonas aeruginosa and Bacillus subtilis in Bioremediation of DieselContaminated Water. Water, Air, & Soil Pollution. 2017.spa
dc.relation.referencesTabari, K. & Tabari, M. Int. J. Environ. Sci. Technol. Characterization of a biodegrading bacterium, Bacillus subtilis, isolated from oil-contaminated soil. International Journal of Environmental Science and Technology. 2017, Vol. 14, págs. 2583-2590.spa
dc.relation.referencesAbdelhaleem HAR, Zein HS, Azeiz A, Sharaf AN, Abdelhadi AA. Identification and characterization of novel bacterial polyaromatic hydrocarbon-degrading enzymes as potential tools for cleaning up hydrocarbon pollutants from different environmental sources. Environ Toxicol Pharmacol. 2019, Vol. 67, págs. 108-116.spa
dc.relation.referencesShi L, Ravikumar V, Derouiche A, Macek B and Mijakovic I. Tyrosine 601 of Bacillus subtilis DnaK Undergoes Phosphorylation and Is Crucial for Chaperone Activity and Heat Shock Survival. Frontiers in Microbiology. 2016, Vol. 7.spa
dc.relation.referencesSeydlová G, Halada P, Fišer R , Toman O , Ulrych A ,and Svobodová J . DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. Journal of Applied Microbiology. 2012, Vol. 112.spa
dc.relation.referencesVenkata Subba Reddy Gangireddygari, Praveen Kumar Kalva, Khayalethu Ntushelo, Manjunatha Bangeppagari , Arnaud Djami Tchatchou y Rajasekhar Reddy Bontha. Influence of environmental factors on biodegradation of quinalphos by Bacillus thuringiensis. Environmental sciences Europe. 6 de marzo de 2017.spa
dc.relation.referencesMandal K, Singh B, Jariyal M y V.K. Gupta. Microbial degradation of fipronil by Bacillus thuringiensis. Ecotoxicology and Environmental Safety. 1 July 2013, Vols. Volume 93,, págs. 87-92.spa
dc.relation.referencesChen S, Deng Y, Chang C. et al. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Scientific Reports. 2015, Vol. 5.spa
dc.relation.referencesCatone MV, Ruiz JA , Castellanos M, Segura D, Espin G, and López NL. High Polyhydroxybutyrate Production in Pseudomonas extremaustralis Is Associated with Differential Expression of Horizontally Acquired and Core Genome Polyhydroxyalkanoate Synthase Genes. PloS one. 2 de junio de 2014.spa
dc.relation.referencesGenBank. Genome Bacillus subtilis. National Center for Biotechnology Information.spa
dc.relation.referencesEarl AM, Losick R, 2 y Kolter R. Ecology and genomics of Bacillus subtilis. Trends in microbiology. 2010.spa
dc.relation.referencesJP, Cuervo. Aislamiento y caracterizacion de Bacillus spp como fijadores biologicos de nitrogeno y solubilizacion de fosfatos en dos muestras de biofertilizantes comerciales. PONTIFICIA UNIVERSIDAD JAVERIANA. 2010.spa
dc.relation.referencesAlmeida AL, Soccol VT y Soccol CR. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Critical Reviews in Biotechnology . 2016, Vol. 36.spa
dc.relation.referencesPortela DD, Chaparro A y López SA. La biotecnología de Bacillus thuringiensis en la agricultura. NOVA. 23 de mayo de 2013.spa
dc.relation.referencesJ, Ochoa G y arrivillga. Bacillus thuringiensis: Avances y perspectivas en el control biológico de Aedes aegypti. Boletín de Malariología y Salud Ambiental. 2009, Vol. 49.spa
dc.relation.referencesJM, Jez. Revisiting protein structure, function, and evolution in the genomic era. Journal of Invertebrate Pathology. 2017, Vol. 142, págs. 11-15.spa
dc.relation.referencesEV, Galperin MY and Koonin. ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic acids research. 2004, Vol. 32, págs. 5452-5463.spa
dc.relation.referencesShahbaaz M, ImtaiyazHassan MD, y Ahmad F. Functional Annotation of Conserved Hypothetical Proteins from Haemophilus influenzae Rd KW20. PloS one. 2013, Vol. 8.spa
dc.relation.referencesIslam S, Shahik S, Sohel, Patwary N, and Hasan MA. In Silico Structural and Functional Annotation of Hypothetical Proteins of Vibrio cholerae O139. Genomics & informatics. 2015, págs. 53-59.spa
dc.relation.referencesOliveira WL, Aragão CL, Maranhão L, Sousa LC, Castro JT, Almeida F and Folador ED. Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance. PLoS One. 2018, Vol. 13.spa
dc.relation.referencesLubec G, Afjehi-Sadat L, Yang JW and Pradeep JP. Searching for hypothetical proteins: Theory and practice based upon original data and literature. Progress in Neurobiology. 2005, Vol. 77, págs. 90-127.spa
dc.relation.referencesJallow MF, Awadh DG, Albaho MS, Devi VY and Thomas BM. Pesticide Knowledge and Safety Practices among Farm Workers in Kuwait: Results of a Survey. Int J Environ Res Public Health. 2017, Vol. 14.spa
dc.relation.referencesGuyton KZ, Loomis D, Grosse Y, El Ghissassi F, Tallaa LB, et al. Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol. 2015, Vol. 16, 5.spa
dc.relation.references. Okonya JS, Petsakos A, Suarez V et al. Pesticide Use Practices in Root, Tuber, and Banana Crops by Smallholder Farmers in Rwanda and Burundi. Int J Environ Res Public Health. 2019, Vol. 16.spa
dc.relation.referencesVerma JP, Jaiswal DK and R. Sagar. Pesticide relevance and their microbial degradation: a-state-of-art. Reviews in Environmental Science and Bio/Technology. 2014, Vol. 13, págs. 429-466.spa
dc.relation.referencesAmbiental, Plan de manejo. Identificación del herbicida glifosato propiedades y toxicidad. Documento plan de manejo Ambiental Erradicacion de Cultivos ilicitos. 2000.spa
dc.relation.referencesInformation, National Center for Biotechnology. Glyphosate. PubChem Database. 2019.spa
dc.relation.referencesVera MS, LagomarsinoL, SylvesterM, Pérez G et al. New evidences of Roundup® (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology. 2010, Vol. 19, 4, págs. 710–721.spa
dc.relation.referencesAnnett R, Habibi H and Hontela A. Impact of glyphosate and glyphosate‐based herbicides on the freshwater environment. Journal of Applied Toxicology. 2014, Vol. 34, 5.spa
dc.relation.referencesGomes MP, Smedbol E, Chalifour A, Hénault-Ethier L, Labrecque M, LepageL, Lucotte M and Juneau P. Alteration of plant physiology by glyphosate and its byproduct aminomethylphosphonic acid: an overview. Journal of Experimental Botany. 2014, Vol. 65, 17, págs. 4691-4703.spa
dc.relation.referencesF, Massot. Estrategias de rizorremediacion de glifosato en suelos bajo explotacion agricola intensiva. Universidad de Buenos Aires. 2018.spa
dc.relation.referencesA, Valavanidis. Glyphosate, the Most Widely Used Herbicide. Health and safety issues. Why scientists differ in their evaluation of its adverse health effects. 2018, Vol. 1.spa
dc.relation.referencesMertens M, Höss S, Neumann G , Afzal J y Reichenbecher W. Glyphosate, a chelating agent—relevant for ecological risk assessment? Environmental science and pollution research international. 2018, Vol. 25, págs. 5298–5317spa
dc.relation.referencesSharma B, Dangi AK , Shukla P. Contemporary enzyme based technologies for bioremediation: A review. J Environ Manage. 2018, Vol. 210, págs. 10-22.spa
dc.relation.referencesGangola S, Sharma A, Bhatt P, Khati P ,y Chaudhary P. Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Scientific reports. 2018, Vol. 8.spa
dc.relation.referencesMacario EC, Yohda M, Macario A y Robb FT. Bridging human chaperonopathies and microbial chaperonins. Communications biology. 2019, Vol. 2.spa
dc.relation.referencesW, Houry. Chaperone-Assisted Protein Folding in the Cell Cytoplasm. Current Protein & Peptide Science. 2001, Vol. 2, 3.spa
dc.relation.referencesMacario EC, Robb FT and Macario A. Prokaryotic Chaperonins as Experimental Models for Elucidating Structure-Function Abnormalities of Human Pathogenic Mutant Counterparts. Frontiers in molecular biosciences. 2017, Vol. 3.spa
dc.relation.referencesZhan H, Feng Y, Fan X, Chen S. Recent advances in glyphosate biodegradation. Applied microbiology and biotechnology. 2018, Vol. 102.spa
dc.relation.referencesPedotti M, Rosini E, Molla G,Moschetti T,Savino C, Vallone B,and Pollegioni L. Glyphosate Resistance by Engineering the Flavoenzyme Glycine Oxidase. Jurnal Biological Chemistry. 2009, Vol. 284.spa
dc.relation.referencesVillarreal-Chiu JF, Quinn JP, and McGrathJw. The Genes and Enzymes of Phosphonate Metabolism by Bacteria, and Their Distribution in the Marine Environment. Frontiers in microbiology. 2012, Vol. 3.spa
dc.relation.referencesAF, Méndez. Aislamiento e identificación de bacterias capaces de degradar glifosato. Universidad ICESI. 2015.spa
dc.relation.referencesKoneman E, Winn W, Allen S, Janda W, Procop G, Schrenckenberger P, Woods. G. Diagnóstico Microbiológico. Texto y atlas a color. Pruebas de sensilidad a los antibióticos. 6. Buenos Aires : Panamericana, 2006, 17, págs. 902- 974.spa
dc.relation.referencesBacillus subtilis subsp. spizizenii ATCC 6633 chromosome, complete genome. GenBank. 2019.spa
dc.relation.referencesBacillus thuringiensis serovar kurstaki str. HD-1, complete genome. GenBank. 2013.spa
dc.relation.referencesArora PK, Kumar M, Chauhan A , Raghava G , and Jain RK. OxDBase: a database of oxygenases involved in biodegradation. BMC Research Notes. 2009, Vol. 2.spa
dc.relation.referencesMukherjee AK, Bhagowati P , Biswa BB , Chanda A and Kalita B . A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. Journal of Proteomics. 2017, Vol. 167, págs. 25-35.spa
dc.relation.referencesTribelli PM, Rossi L., Ricardi MM. Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. Journal of Industrial Microbiology & Biotechnology. 2017, Vol. 45, págs. 15-23.spa
dc.relation.referencesZucoloto B, Rodrigues VD, de Oliveira VM, Mariscal LM and Marsaiolia AJ. Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage. Brazilian Journal of Microbiology. 2016, Vol. 47, págs. 846-852.spa
dc.relation.referencesMedina JDC, Woiciechowski AL,Guimarães LRC,Karp SG and Soccol CR. 10 - Peroxidases. Current Developments in Biotechnology and Bioengineering. 2017, págs. 217-232.spa
dc.relation.referencesMedina JDC, Woiciechowski AL,Guimarães LRC,Karp SG and Soccol CR. 10 - Peroxidases. Current Developments in Biotechnology and Bioengineering. 2017, págs. 217-232.spa
dc.relation.referencesChang YC, Choib D, Takamizawa K and Kikuchia S. Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresource Technology. 2014, Vol. 152, págs. 429-436.spa
dc.relation.referencesD, Borrelli GM and Trono. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. International Jurnal of Molecular Sciences. 2015, Vol. 16.spa
dc.relation.referencesAraujo FA, Barh D, Silva A, Guimarães L and Ramos RTJ. GO FEAT: a rapid webbased functional annotation tool for genomic and transcriptomic data. Scientific Reports. 2018, Vol. 8.spa
dc.relation.referencesChen C, Huang H and Wu CH3. Protein Bioinformatics Databases and Resources. Methods in Molecular Biology. 2017, Vol. 1558. 89. Finn RD, Attwood TK, Babbitt PC , Bateman A , Bork P and et al. InterPro in 2017— beyond protein family and domain annotations. Nuecleic Acids Research. 2017, Vol. 45.spa
dc.relation.referencesGeer LY, Domrachev M , Lipman DJ , Bryant SH . CDART: protein homology by domain architecture. Genome Research. 2002, Vol. 10.spa
dc.relation.referencesLetunic I, Doerks T , Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Research. 2012, Vol. 40.spa
dc.relation.referencesCai CZ, Han LY, Ji ZL , Chen X , Chen YZ . SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Research. 2003, Vol. 31.spa
dc.relation.referencesPeabody MA, Laird MR, Vlasschaert C , Lo R, Brinkman FS. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Research. 2016, Vol. 44.spa
dc.relation.referencesYu CS, Chen YC , Lu CH , Hwang JK . Prediction of protein subcellular localization. Proteins. 2006, Vol. 64.spa
dc.relation.referencesLee H-L, Chiang C, Liang S-Y, Lee D-Y. Quantitative Proteomics Analysis Reveals the Min System of Escherichia coli Modulates Reversible Protein Association with the Inner Membrane. Molecular and cellular proteomics. 2016, Vol. 15.spa
dc.relation.referencesGasteiger E, Gattiker A , Hoogland C , Ivanyi I , Appel RD , Bairoch A . ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research. 2003, Vol. 31.spa
dc.relation.referencesKathera C, Dulla EL, Chinahadri VP ,Mallakuntla TS , Basavaraju S , and Jasti P. Proteomic characterization and bio-informatic analysis of differentially expressed E. coli Nissle 1917 proteins with response to cocoti wine stress. 3 Biotech. 2017, Vol. 7.spa
dc.relation.referencesFranceschini A, Szklarczyk D , Frankild S , Kuhn M , Simonovic M , Roth A , Lin J , Minguez P , Bork P , von Mering C , Jensen LJ . STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research. 2013, Vol. 41.spa
dc.relation.referencesCamacho C, Coulouris G , Avagyan V , Ma N , Papadopoulos J , Bealer K , Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009, Vol. 10.spa
dc.relation.references. Folador EL, de Carvalho PV, Silva WM, Ferreira RS, Silva A, Gromiha M, Ghosh P, Barh D, Azevedo V, Röttger R. In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks. BMC Systems Biology. 2016, Vol. 10.spa
dc.relation.referencesShahbaaz M, ImtaiyazHassan MD, and Ahmad F. Functional Annotation of Conserved Hypothetical Proteins from Haemophilus influenzae Rd KW20. PLoS One. 2013, Vol. 8.spa
dc.relation.referencesMcClure R1, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool CK and Tjaden B. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Research. 2013, Vol. 41.spa
dc.relation.referencesConesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005, Vol. 21.spa
dc.relation.referencesParween T, Bhandari P,Sharma R, Jan S et all. Bioremediation: A Sustainable Tool to Prevent Pesticide Pollution. Modern Age Environmental Problems and their. 2017, Vol. 1.spa
dc.relation.referencesPollegioni L, Schonbrunn E, and Siehl D. Molecular basis of glyphosate resistance: Different approaches through protein engineering. The FEBS Jurnal . 2012, Vol. 278.spa
dc.relation.references. Sviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, and Leontievsky AA. Glyphosate: Safety Risks, Biodegradation,2 and Bioremediation. Dust Removal and Collection Techniques in "Current Environmental Issues and Challenges". 2014, Vol. 1.spa
dc.relation.referencesMoneke AN, Okpala GN and Anyanw CU. Biodegradation of glyphosate herbicide in vitro using bacterial isolates from four rice fields. African Jurnal of Biotechnology. 2010, Vol. 9.spa
dc.relation.referencesMartinez P, Bernal J, Agudelo E y Bernier S. TOLERANCIA Y DEGRADACION DEL GLIFOSATO POR BACTERIAS AISLADAS DE SUELOS CON APLICACIONES FRECUENTES DE ROUNDUP SL®. Revista Pilquen. 2012, Vol. 14spa
dc.relation.referencesFan J, Yang G, Zhao H, Shi G, Geng Y, Hou T, Tao K. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. The jurnal of general and applied microbiology. 2012, Vol. 58.spa
dc.relation.referencesSviridov AV, Shushkova TV, Ermakova IT, Ivanova EV, Epiktetov DO, Leont'evskii AA. [Microbial degradation of glyphosate herbicides (review)]. Prikladnaia biokhimiia i mikrobiologiia. 2015, Vol. 51.spa
dc.relation.referencesZhan T, Zhang K, Chen Y, Lin Y, Wu G, Zhang L, Yao P, Shao Z, and Liu Z. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution. PLoS ONE. 2013, Vol. 8.spa
dc.relation.referencesIyer R, Iken B, Damania A, y Krieger J. Whole genome analysis of six organophosphate-degrading rhizobacteria reveals putative agrochemical degradation enzymes with broad substrate specificity. Environmental Science and Pollution Research. 2018, Vol. 25, págs. 13660-13675.spa
dc.relation.referencesShu X, Wang Y,Zhou Q, Li M, Hu H,1,Ma Y, and et al. Biological Degradation of Aflatoxin B1 by Cell-Free Extracts of Bacillus velezensis DY3108 with Broad PH Stability and Excellent Thermostability. Toxins . Vol. 10.spa
dc.relation.referencesder, Zhang Q and van. Answers to the Carbon–Phosphorus Lyase Conundrum. Chembiochem. 2012, Vol. 13.spa
dc.relation.referencesGM, Gebhardy S and Cook. Differential Regulation of High-Affinity Phosphate Transport Systems of Mycobacterium smegmatis: Identification of PhnF, a Repressor of the phnDCE Opero. Jurnal of Bacteriology. 2008, Vol. 190.spa
dc.relation.referencesJochimsen B, Lolle S, McSorley FR, Nabi M, Stougaard J, Zechel LD and HoveJensen B. Five phosphonate operon gene products as components of a multi-subunit 65 complex of the carbon-phosphorus lyase pathway. Proceedings of the National Academy of Sciences of the United States od America. 2011, Vol. 108.spa
dc.relation.referencesWW, White AK and Metcalf. Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite. Jurnal Bacteriology. 2004, Vol. 186.spa
dc.relation.referencesIllingworth M, Ellis H, and Chen L. Creating the Functional Single-Ring GroELGroES Chaperonin Systems via Modulating GroEL-GroES Interaction. Scientific Reports. 2017, Vol. 7.spa
dc.relation.referencesGhai I, Bajaj H, Bafna JA, Hussein HAED, Winterhalter M, and Wagner R. Ampicillin permeation across OmpF, the major outer-membrane channel in Escherichia coli. Jurnal Biological Chemistry. 2018, Vol. 293.spa
dc.relation.referencesM, Chopra I and Roberts. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and Molecular Biology Reviews. 2001, Vol. 65.spa
dc.relation.referencesB, Ziervogel BK and Roux. The Binding of Antibiotics in OmpF Porin. Structure . 2014, Vol. 21.spa
dc.relation.referencesLiu J, Wang M, Yi H, Liu M, Zhu D, Wu Y, Jia R, Sun K, Yang Q, Chen S, Zhao X, Chen X, Cheng A. ATPase activity of GroEL is dependent on GroES and it is response for environmental stress in Riemerella anatipestifer. Microbial Pathogenesis. 2018, Vol. 121.spa
dc.relation.referencesTribelli PM, Di Martino C, López NI and Raiger Iustman LJ. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis. Biodegradation. 2012, Vol. 23, págs. 645-651.spa
dc.relation.referencesRaiger Iustman, L.J., Tribelli, P.M., Ibarra, J.G. et al. Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles. 2015, Vol. 19, págs. 207-220.spa
dc.relation.referencesDzionek A, Wojcieszyńska D and Guzik U. Natural carriers in bioremediation: A review. Electronic Journal of Biotechnology. 2016, Vol. 23, págs. 28-36.spa
dc.relation.referencesBenforte FC, Colonnella MA, Ricardi MM, Solar Venero EC, Lizarraga L, López NI, Tribelli PM. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis. PLoS One. 2018.spa
dc.relation.referencesZ, Cycoń M and Piotrowska. Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review. Front Microbiol. 2016.spa
dc.relation.referencesVásquez F, Llantén SH ,Pavlov MS , Marshall SH y Pacheco JP. Phylogenetic MLSA and phenotypic analysis identification of three probable novel Pseudomonas species isolated on King George Island, South Shetland, Antarctica. Brazilian journal of microbiology. 15 de marzo de 2018.spa
dc.relation.referencesJensen BH, Zechel DL and Jochimsena B. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase. Microbiol Mol Biol Rev. 2014, Vol. 78.spa
dc.relation.referencesWang Y, Ezemaduka AN , Li Z , Chen Z , Canción C . Joint Toxicity of Arsenic, Copper and Glyphosate on Behavior, Reproduction and Heat Shock Protein Response in Caenorhabditis elegans. Bulletin of Environmental Contamination and Toxicology. 2017, Vol. 98, págs. 465–471.spa
dc.relation.referencesHuang Y, Xiao L, Li F, Xiao M, Lin D, Long X, and Wu Z. Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3- phenoxy Benzoic Acid: A Review. Molecules. 2018, Vol. 23.spa
dc.relation.referencesRousidou K, Chanika E , Georgiadou D, Soueref E , Katsarou D et al. Isolation of Oxamyl-degrading Bacteria and Identification of cehA as a Novel Oxamyl Hydrolase Gene. Front Microbiol. 2016.spa
dc.relation.referencesArora, Pankaj Kumar. Decolourization of 4-Chloro-2-Nitrophenol by a Soil Bacterium, Bacillus subtilis RKJ 700. PLoS One. 2012, Vol. 7.spa
dc.relation.referencesEswar N, Webb B, Marti-Renom ,Madhusudhan MS,Eramian D. Comparative Protein Structure Modeling Using Modeller. Curr Protoc Bioinformatics. 2014, Vol. 5.spa
dc.relation.referencesChacón MG, Kendrick EG y Leak DJ. Engineering Escherichia coli for the production of butyl octanoate from endogenous octanoyl-CoA. PeerJ. 2019, Vol. 7.spa
dc.relation.referencesPollegioni L, Schonbrunn E, and Siehl D. Molecular basis of glyphosate resistance: Different approaches through protein engineering. The FEBS Jurnal . 2011, Vol. 278.spa
dc.relation.referencesAF, Mémdez. Aislamiento e identificación de bacterias capaces de degradar glifosato. Universidad ICESI. 2015.spa
dc.relation.referencesSeydlová G, Halada P , Fišer R , Toman O , Ulrych A , Svobodová J. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. Journal of Applied Microbiology. 2012, Vol. 112.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembBioaculación
dc.subject.lembFertilizantes
dc.subject.lembPesticidas
dc.subject.proposalPseudomonas extremaustralisspa
dc.subject.proposalBacillus subtilis y Bacillus thuringiensisspa
dc.subject.proposalXenobióticospa
dc.subject.proposalProteína hipotéticaspa
dc.subject.proposalProteína de choque térmicospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_16ecspa


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-sa/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-sa/4.0/