Show simple item record

dc.contributor.advisorCastro Molina, Susan Lorena
dc.contributor.authorVergara Vanegas, Valentina
dc.date.accessioned2021-09-09T18:58:45Z
dc.date.available2021-09-09T18:58:45Z
dc.date.issued2021-05-28
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/2831
dc.description.abstractLa tuberculosis (TB) es una enfermedad infecto contagiosa, causada principalmente por Mycobacterium tuberculosis (Mtb), la cual sigue siendo una enfermedad de alto impacto en salud pública. Actualmente la única vacuna avalada por la OMS contra la TB, se fundamenta en un bacilo atenuado de Mycobacterium bovis BCG, con una eficacia variable que no confiere protección en adultos contra tuberculosis pulmonar. A pesar de la ardua investigación realizada por diferentes grupos en el mundo, los intentos de diseñar una vacuna eficaz contra la TB no han tenido éxito, ya que Mtb utiliza una variedad de mecanismos para prevenir su eliminación, no obstante, dada la problemática de la TB es necesario continuar con el desarrollo de las vacunas. En consecuencia, el presente trabajo pretende contribuir a la evaluación de antígenos propuestos por la FIDIC como posibles candidatos a vacuna contra la TB. Para ello, se escogieron 12 donantes a los cuales se les realizó pruebas diagnósticas de PPD y Quantiferon, adicionalmente, se genotipificó a cada donante los alelos DRβ1 del CMHII, para identificar la unión a péptidos derivados de proteínas de la superficie celular de Mtb H37Rv. A continuación, se obtuvieron linfocitos de los individuos, que se pulsaron con péptidos alelo específicos y producto de la interacción CMHII/TCR se produjo la linfoproliferación. Después, los linfocitos se pusieron en contacto con los macrófagos infectados con Mtb H37Rv (co-cultivo), con el fin de evaluar si la respuesta inducida por los péptidos era capaz de controlar el crecimiento del patógeno.spa
dc.description.tableofcontentsRESUMEN INTRODUCCIÓN 13 1. PREGUNTA PROBLEMA 15 2. JUSTIFICACIÓN 17 3. ANTECEDENTES 19 4. OBJETIVOS 25 4.1 Objetivo General 25 4.2 Objetivos Específicos 25 5. MARCO TEÓRICO 26 5.1 Epidemiología de la TB 26 5.2 Generalidades de Mycobacterium tuberculosis 28 5.3 Respuesta inmune contra tuberculosis 29 5.4 Procesamiento antigénico por parte de macrófagos 34 5.5 Métodos in vitro para la obtención de macrófagos 37 5.6 Memoria Inmunológica en las celulas T 38 5.7 Pruebas Diagnósticas 39 5.8 Modelos Vacunales 44 6 DISEÑO METODOLÓGICO 46 6.1 Universo, población, muestra 46 6.2 Hipótesis, variables, indicadores 46 6.3 Variables 46 6.4 Técnicas y procedimientos. 47 6.4.1 Grupo de estudio 47 6.4.2 Selección de péptidos sintéticos 47 6.4.3 Ensayo de Linfoproliferación 49 6.4.4 Determinación memoria inmunológica 50 6.4.5 Obtención de monocitos para derivar a macrófagos 51 6.4.5.1 Obtención de PMBCs y macrófagos 51 6.4.5.2 Zimografía- Activación del macrófago por liberación de proteasas 52 6.4.5.3 Identificación de IL-10 y IL-12 para la activación del macrófago 53 6.4.6 Mantenimiento de Mtb H37Rv 56 6.4.7 Fagocitosis de Mtb H37Rv en macrófagos 56 6.4.8 Co-cultivo de linfocitos T estimulados con macrófagos infectados con Mtb 56 6.4.9 Evaluación del crecimiento intracelular de Mtb H37Rv 57 6.4.10 Medición de Óxido nítrico 57 7. RESULTADOS 58 7.1 Selección del grupo de estudio y unión al CMH-ll 58 7.2 Ensayo de linfoproliferación 61 7.3 Evaluación de memoria inmunológica 67 7.4 Diferenciación de monocitos a macrófagos 69 7.5 Mantenimiento y crecimiento de Mtb H37Rv 74 7.6 Estandarización del MOI de infección en macrófagos 75 7.7 Ensayo de co-cultivo 75 7.8 Cuantificación y evaluación de la producción del óxido nítrico 78 8 DISCUSIÓN DE RESULTADOS 81 9 CONCLUSIONES 88 10. REFERENCIAS BIBLIOGRÁFICAS 91spa
dc.format.extent108p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleEvaluación de la función efectora de Linfocitos T activados por péptidos provenientes de Mycobacterium Tuberculosis H37rv en Macrófagos Infectados por el Patógenospa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.Cspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesOrganization WH. Global tuberculosis report 2020. 2020.spa
dc.relation.referencesMangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, et al. Protection by BCG Vaccine Against Tuberculosis: A Systematic Review of Randomized Controlled Trials. Clinical Infectious Diseases 2014; Volume 58, Pages 470– 480.spa
dc.relation.referencesWorku S, Hoft DF. In vitro measurement of protective mycobacterial immunity: antigen-specific expansion of T cells capable of inhibiting intracellular growth of bacille Calmette-Guerin. Clinical infectious diseases. The Infectious Diseases Society of America 2000; 30 Suppl 3:S257-61.spa
dc.relation.referencesTanner R, O'Shea MK, Fletcher HA,McShane H. In vitro mycobacterial growth inhibition assays: A tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine 2016; Volume 34, Issue 39.spa
dc.relation.referencesSánchez-Barinas CD, Ocampo M, Tabares L,Bermúdez M, Patarroyo MA,Patarroyo ME. Specific Binding Peptides from Rv3632: A Strategy for Blocking Mycobacterium tuberculosis Entry to Target Cells?. BioMed Research International 2019.spa
dc.relation.referencesOcampo M Ramirez D, Rodríguez DM, Muñoz M, Curtidor H, et al. The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines Protein Engineering, Design and Selection 2012; Volume 25.spa
dc.relation.referencesMoliva JI, Turner J, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette et Guerin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine 2015; 33(39): 5035–5041.spa
dc.relation.referencesFletcher H, Tanner R, Wallis RS, Meyer J, Manjaly ZR, et al. Inhibition of mycobacterial growth in vitro following primary but not secondary vaccination with Mycobacterium bovis BCG. Clin Vaccine Immunol 2013; 20(11):1683-9.spa
dc.relation.referencesHoft DF, Worku S, Kampmann B, Whalen CC, Hirsch CS, et al. Investigation of the Relationships between Immune-Mediated Inhibition of Mycobacterial Growth and Other Potential Surrogate Markers of Protective Mycobacterium tuberculosis Immunity. The Journal of Infectious Diseases 2002; 186:1448– 57.spa
dc.relation.referencesCarabali-Isajar ML, Ocampo M, Rodriguez DC, et al. Towards designing a synthetic antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells. Bioorganic & medicinal chemistry 2018; 26: 2401-9.spa
dc.relation.referencesKaufmann SH. How can immunology contribute to the control of tuberculosis?. Nature reviews Immunology 2001; 1: 20-30.spa
dc.relation.referencesBozzano F, Marras F, Maria AD. Immunology of tuberculosis. Mediterranean journal of hematology and infectious diseases 2014; 6: e2014027.spa
dc.relation.referencesMartinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13.spa
dc.relation.referencesItaliani P, B Boraschi D. From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunology 2014.spa
dc.relation.referencesParra M, Yang AL, Lim J, Kolibab K, Derrick S, Cadieux N, et al. Development of a murine mycobacterial growth inhibition assay for evaluating vaccines against Mycobacterium tuberculosis. Clinical and vaccine immunology, 2009; 16(7):1025-32.spa
dc.relation.referencesMcShane H, Williams A. A review of preclinical animal models utilised for TB vaccine evaluation in the context of recent human efficacy data. Tuberculosis. 2014; 94(2):105-10.spa
dc.relation.referencesMantilla Galindo A, Ocampo M, Patarroyo MA. Experimental models used in evaluating antituberculosis vaccines: the latest advances in the field. Expert Review of Vaccines 2019.spa
dc.relation.referencesYanti B, Mulyadi M, Amin M, Harapan H, Mertaniasih MN, et al. The role of Mycobacterium tuberculosis complex species on apoptosis and necroptosis state of macrophages derived from active pulmonary tuberculosis patients. BMC Research Notes 2020; Article number: 415.spa
dc.relation.referencesRath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol 2014; 5: 532.spa
dc.relation.referencesHarirzadeh S, Kazemi MJ, Babakhani S. Identification of Mycobacterium tuberculosis isolated from culture-negative pulmonary and extra-pulmonary samples in cases of suspected tuberculosis. GMS Hyg Infect Control 2019; 14: Doc09.spa
dc.relation.referencesO'Garra A, Redford PS, McNab FW, Bloom CI, et al. The Immune Response in Tuberculosis. Annu Rev Immunol, 2013; 31:475–527.spa
dc.relation.referencesKaufmann SH, Hussey G, Lambert PH. New vaccines for tuberculosis. Lancet 2010; 375(9731):2110-9.spa
dc.relation.referencesPai M, Berh M. Latent Mycobacterium tuberculosis Infection and Interferon- Gamma Release Assays. Microbiol Spectr 2016; 4(5).spa
dc.relation.referencesPai M, Denkinger CM, Kik SV, Rangaka MX, Zwerling A, et al. Gamma Interferon Release Assays for Detection of Mycobacterium tuberculosis Infection. Clin Microbiol Rev 2014; 27(1): 3–20.spa
dc.relation.referencesSekyere JO, Maphalala N, Malinga LA, Mbelle MN, Maningi NE. A Comparative Evaluation of the New Genexpert MTB/RIF Ultra and other Rapid Diagnostic Assays for Detecting Tuberculosis in Pulmonary and Extra Pulmonary Specimens. Scientific Reports 2019; 16587.spa
dc.relation.referencesBaena A, Porcelli SA. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens 2010; 74(3): 189–204.spa
dc.relation.referencesRamakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 2012; 12(5):352-66.spa
dc.relation.referencesLambert C, Preijers F, Demirel GY, Sack U. Monocytes and macrophages in flow: an ESCCA initiative on advanced analyses of monocyte lineage using flow cytometry. International Clinical Cytometry Society 2015.spa
dc.relation.referencesDeshmane SL,Kremlev S, Amini S, Sawaya BE. Monocyte Chemoattractant Protein-1 (MCP-1): An Overview. J Interferon Cytokine Res 2009; 29(6): 313– 326.spa
dc.relation.referencesNguyen L, Pieters J. The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. TRENDS in Cell Biology 2005; Vol.15 No.5.spa
dc.relation.referencesCipriani G, Gibbons SJ, Kashyap PC, Farrugia G. Intrinsic Gastrointestinal Macrophages: Their Phenotype and Role in Gastrointestinal Motility. Cellular and Molecular Gastroenterology and Hepatology 2016; 2.spa
dc.relation.referencesHammerbeck C, Goetz C, Newman K, Bonnevier J, Aggeler B. Phenotypic Characterization of Human M1 and M2a Macrophages Cultured with Different Serums and in the Presence or Absence of Polarizing Cytokines. R&D Systems 2018.spa
dc.relation.referencesKozloski GA. Macrophage Markers. MATER METHODS 2019; 9:2758.spa
dc.relation.referencesLalvani A, Millington KA. T Cells and Tuberculosis: Beyond Interferon-γ. The Journal of Infectious Diseases 2008; Volume 197, Pages 941–943.spa
dc.relation.referencesQueval C, Song OR, Deboosère N, Delorme V, Debrie AS, et al. STAT3 Represses Nitric Oxide Synthesis in Human Macrophages upon Mycobacterium tuberculosis Infection. Scientific Reports 2016; 6:29297.spa
dc.relation.referencesJamaati H, Mortaz E, Pajouhi Z, Folkerts G, Movassaghi M, et al. Nitric Oxide in the Pathogenesis and Treatment of Tuberculosis. Front Microbiol 2017; 8: 2008.spa
dc.relation.referencesSalvemini D; Doyle TM; Cuzzocrea S. Peroxynitrite and oxidative/nitrative stress in inflammation. Biochem Soc Trans 2006; 34 (5): 965–970.spa
dc.relation.referencesTripathi P, Kashyap L, Singh V. The role of nitric oxide in in£ammatory reactions. Immunology group, ICGEB 2007.spa
dc.relation.referencesRomagnoli A, Etna MP, Giacomini E, Pardini M, Remoli ME, Corazzari M, et al. ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells. 2012; 8(9):1357-1370.spa
dc.relation.referencesTait DR., Hatherill M., Van Der Meeren O., Ginsberg AM., Van Brakel E., Salaun B., et al. Final Analysis of a Trial of M72/AS01E Vaccine to Prevent Tuberculosis. New England Journal of Medicine 2019.spa
dc.relation.referencesPatarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. Acc Chem Res 2008; 41(3):377-86.spa
dc.relation.referencesOcampo M, Patarroyo MA, Vanegas M, Alba MP, Patarroyo ME. Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Critical reviews in microbiology 2014; 40(2):117-45.spa
dc.relation.referencesOcampo M, Patarroyo MA, Vanegas M, Curtidor H, Patarroyo ME. Specific interaction between Mycobacterium tuberculosis lipoprotein-derived peptides and target cells inhibits mycobacterial entry in vitro. Chem Biol Drug Des 2014; 84(6): 626–641.spa
dc.relation.referencesRodrıguez D, Ocampo M, Varela Y, Curtidor H, Patarroyo MA,Patarroyo ME. Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. FEMS Pathogens and Disease 2015; 73.spa
dc.relation.referencesSanchez-Barinas CD, Ocampo M, Vanegas M, Castaneda-Ramirez JJ, Patarroyo MA, Patarroyo ME. Mycobacterium tuberculosis H37Rv LpqG Protein Peptides Can Inhibit Mycobacterial Entry through Specific Interactions. Molecules 2018; 23 (3).spa
dc.relation.referencesRodríguez DC, Ocampo M, Reyes C, Arévalo-Pinzón G, Munoz M, et al. Peptide Specific Interaction Can Inhibit Mycobacterium tuberculosis H37Rv Infection. Journal of Cellular Biochemistry. Journal of Cellular Biochemistry 2016; 117:946–958.spa
dc.relation.referencesKumar K. Clinical implications of the global multidrug-resistant tuberculosis epidemic. Clin Med (Lond) 2016; 16(6): 565–570.spa
dc.relation.referencesOrganization PAH. Tuberculosis en las Américas 2019. 2019.spa
dc.relation.referencesINS. Comportamiento de la Vigilancia de Tuberculosis, Colombia, semana 38 de 2020. 2020.spa
dc.relation.referencesDelogu G, Sali M, Fadda G. The Biology of Mycobacterium Tuberculosis Infection. Mediterr J Hematol Infect Dis 2013; 5(1): e2013070.spa
dc.relation.referencesKnight W & Gumbs L. Tuberculosis: An Overview. Primary Care: Clinics in Office Practice 2013; 40(3), 743–756.spa
dc.relation.referencesAlderwick LJ, Harrison J, Lloyd GS, Birch HL. The Mycobacterial Cell Wall— Peptidoglycan and Arabinogalactan. Cold Spring Harb Perspect Med 2015; 5(8): a021113.spa
dc.relation.referencesKaur D, Guerin ME, Škovierová H, Brennan PJ y Jackson M. Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 2011; 69: 23–78.spa
dc.relation.referencesCook GM, Berney M, Gebhard S, Heinemann M, Cox RA, et al. Physiology of Mycobacteria. Adv Microb Physiol 2013; 55: 81–319.spa
dc.relation.referencesLi W, Deng G, Li M, Liu X, Wang Y. Roles of Mucosal Immunity against Mycobacterium tuberculosis Infection. Tuberc Res Treat 2012; 2012: 791728.spa
dc.relation.referencesChurchyard G, Kim P, Shah SN, Rustomjee R, Gandhi N, et al. What We Know About Tuberculosis Transmission: An Overview. J Infect Dis 2017; 216(Suppl 6): S629.spa
dc.relation.referencesPlüddemann A, Mukhopadhyay S & Gordon S. The interaction of macrophage receptors with bacterial ligands. Expert Reviews in Molecular Medicine, 2006; 8(28).spa
dc.relation.referencesZhai W, Wu F, Zhang Y, Fu Y, Liu Z. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. International Journal of Molecular Sciences 2019.spa
dc.relation.references59.Wieczorek M, Abualrous ET, Sticht J, Benito MA, Stolzenberg S, et al. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol 2017; 8: 292.spa
dc.relation.referencesStern LJ, Calvo JM. HLA-DR: Molecular insights and vaccine design. Curr Pharm Des 2009; 15(28): 3249–3261.spa
dc.relation.referencesHubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunology 2013; 3;4:82.spa
dc.relation.referencesMartino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr 2019.spa
dc.relation.referencesKrishnan N, Robertson BD, Thwaites G. Pathways of IL-1β secretion by macrophages infected with clinical Mycobacterium tuberculosis strains. Tuberculosis (Edinb) 2013; 93(5): 538–547.spa
dc.relation.referencesDavoust J, Banchereau J. Naked antigen-presenting molecules on dendritic cells. Nature Cell Biology 2000; E46–E48.spa
dc.relation.referencesSantambrogio L, Sato A, Carven GJ, Belyanskaya SL, Strominger JL, et al. Extracellular antigen processing and presentation by immature dendritic cells. PNAS 1999; 15056-15061.spa
dc.relation.referencesManaury B. Proteases: Essential Actors in Processing Antigens and Intracellular Toll-Like Receptors. Front Immunol 2013; 4: 299.spa
dc.relation.referencesPires D, Marques J, Pombo JP, Carmo N, Bettencourt P, et al. Role of Cathepsins in Mycobacterium tuberculosis Survival in Human Macrophages. Sci Rep 2016; 10.1038 / srep32247.spa
dc.relation.referencesEhrt S, Schnappinger D. Mycobacterial survival strategies in the phagosome: Defense against host stresses. Cell Microbiol 2009; 11(8): 1170–1178.spa
dc.relation.referencesLuiking YC, Engelen MP, Deutz NE. Regulation of Nitric oxide production in Health and Disease. Curr Opin Clin Nutr Metab Care 2011; 13(1): 97–104.spa
dc.relation.referencesFlam BR, Eichler DC, Solomonson LP. Endothelial nitric oxide production is tightly coupled to the citrulline–NO cycle. Nitric Oxide 2007; 17(3-4), 115–121.spa
dc.relation.referencesDurante W, Johnson FK, Johnson RA. Arginase: A critical Regulator of Nitric Oxide Synthesis ans Vascular Fuction. Clin Exp Pharmacol Physiol 2007; 34(9): 906–911.spa
dc.relation.referencesPalmieri EM, McGinity C, Wink DA, McVicar DW. Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight. Metabolites 2020; 10(11): 429.spa
dc.relation.referencesBhat KH, Mukhopadhyay S. Macrophage takeover and the host–bacilli interplay during tuberculosis. Future Microbiology 2015; 10(5):853-872spa
dc.relation.referencesYang CY Yuk JM, Jo EK. The Role of Nitric Oxide in Mycobacterial Infections. Immune Netw 2009; 9(2): 46–52.spa
dc.relation.referencesGeissmann F, Manz MG, Jung S, Sieweke MH, Merad M, et al. Development of monocytes, macrophages and dendritic cells. ScienceDirect 2010; 327(5966): 656–661.spa
dc.relation.referencesYang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark Res 2014; 2: 1.spa
dc.relation.referencesRuytinx P, Proost P, Damme JV, Struyf S. Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Front Immunol 2018; 9: 1930.spa
dc.relation.referencesRuytinx P, Proost P, Damme JV, Struyf S. Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Front Immunol 2018; 9: 1930.spa
dc.relation.referencesXu Y, Zhang M, Ramos CA, Durett A, Liu E, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Sangre 2014; 123 (24): 3750–3759.spa
dc.relation.referencesGattinoni L, Restifo N. Moving T memory stem cells to the clinic. INSIDE BLOOD 2013; 121 (4): 567–568.spa
dc.relation.referencesLoddenkemper R, Lipman M, Zumla A. Clinical Aspects of Adult Tuberculosis. Cold Spring Harb Perspect Med 2016; 6(1): a017848.spa
dc.relation.referencesDesikan P. Sputum smear microscopy in tuberculosis: Is it still relevant? Indian J Med Res 2013; 137(3): 442–444.spa
dc.relation.referencesLawn SD. Advances in Diagnostic Assays for Tuberculosis. Cold Spring Harb Perspect Med 2015; 5(12): a017806.spa
dc.relation.referencesAzadi D, Motallebirad T, Ghaffari K, Shojaei H. Mycobacteriosis and Tuberculosis: Laboratory Diagnosis. Open Microbiol J 2018; 12: 41–58.spa
dc.relation.referencesCampbell IA, Bah-Sow O. Pulmonary tuberculosis: diagnosis and treatment. BMJ 2006; 332(7551): 1194–1197.spa
dc.relation.referencesHeemskerk D, Caws M, Marais B, Farrar J. Tuberculosis in Adults and Children. Diagnosis Springer 2015; Chapter 4.spa
dc.relation.referencesAsmar S, Drancourt M. Rapid culture-based diagnosis of pulmonary tuberculosis in developed and developing countries. Front Microbiol 2015.spa
dc.relation.referencesPalomino JC. Nonconventional and new methods in the diagnosis of tuberculosis: feasibility and applicability in the field. Eur Respir J 2005; 26: 339–350.spa
dc.relation.referencesKhairunisa S. Herramientas de Diagnóstico de la Tuberculosis. Treatment Ation Group 2017.spa
dc.relation.referencesLi J, Zhao A, Tanq J, Wanq G, Shi Y, et al. Tuberculosis vaccine development: from classic to clinical candidates. European Journal of Clinical Microbiology & Infectious Diseases 2020; 39, pages1405–1425.spa
dc.relation.referencesLi Z, Zheng C, Terreni M, Tanzi L, et al. Novel Vaccine Candidates against Tuberculosis. Current Medicinal Chemistry, Bentham Science 2020; 27 (31), pp.5095 - 5118.spa
dc.relation.referencesHoughten RA. General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A 1985; 82(15): 5131–5135.spa
dc.relation.referencesQuah BJ, Warren HS, Parish CR. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc 2007; 2(9):2049-56.spa
dc.relation.referencesVerdijk P, Veelen A, Ru H, Hensbergen PU, Mizuno K. Morphological changes during dendritic cell maturation correlate with cofilin activation and translocation to the cell membrane. Molecular immunity 2003; 34(1):156-64.spa
dc.relation.referencesToni LS, Garcia AM, Jeffrey DA, Jiang X, Stauffer BL, et al. Optimization of phenol-chloroform RNA extraction. ScienceDirect 2018; Volume 5, 2018, Pages 599-608.spa
dc.relation.referencesEdgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 2004; 32(5):1792-1797.spa
dc.relation.referencesZhang HJ, Yang R, Wang YT, Dong HW, Wang F, et al. A simple and practical method that prepares high molecular weight DNA ladders. Molecular Medicine Reports 2012; 1211-1213spa
dc.relation.referencesRodriguez D.C, Ocampo M, Salazar L.M, Patarroyo M.A. Quantifying intracellular Mycobacterium tuberculosis: An essential issue for in vitro assays. MicrobiologyOpen 2018; 7:e588spa
dc.relation.referencesBryan NS, Grisham MB. Methods to Detect Nitric Oxide and its Metabolites in Biological Samples. Free Radic Biol Med 2007; 43(5): 645–657.spa
dc.relation.referencesGalarza F, Mc cabe A, Melo Dos Santos EJ, Jones J, Takeshita L, et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res 2020; 8;48(D1):D783-D788.spa
dc.relation.referencesReynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, et al. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J Proteome Res 2020; 19(6):2304-2315.spa
dc.relation.referencesMahamed D, Boulle M, Ganga Y, Mc Arthur C, Skroch S, et al. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. Elife 2017; 28;6:e22028.spa
dc.relation.referencesCurtidor H, Patarroyo M, Patarroyo MA. Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opin Biol Ther 2015; 40(2):117-45.spa
dc.relation.referencesCarabaliI ML, Ocampo M, Varela Y, Arevalo D, Patarroyo MA, et al. Antibodies targeting Mycobacterium tuberculosis peptides inhibit mycobacterial entry to infection target cells. Biological Macromolecules 2020; Pages 712-720.spa
dc.relation.referencesLopez C, Yepes Y, Arevalo D, Patarroyo ME, Patarroyo MA. The in Vitro Antigenicity of Plasmodium vivax Rhoptry Neck Protein 2 (PvRON2) B- and T-Epitopes Selected by HLA-DRB1 Binding Profile. Front Cell Infect Microbiol 2018; 8: 156.spa
dc.relation.referencesHoward M, Chesnut GR, Krieger J. Antigen Processing and Presentation by B Cells. The Molecular Basis of B-Cell Differentiation and Function 1986; pp 95-107.spa
dc.relation.referencesBrinke A, Trzonkowska N, Mansilla MJ, Turksma AW, Piekarska K, et al. Monitoring T-Cell Responses in Translational Studies: Optimization of Dye-Based Proliferation Assay for Evaluation of Antigen-Specific Responses. Front Immunol 2017.spa
dc.relation.referencesKaufmann SH . Libro de Abbas Lancet 2010; 375:2110-19.spa
dc.relation.referencesYoon H, Kim TS, Braciale TJ. The Cell Cycle Time of CD8+ T Cells Responding In Vivo Is Controlled by the Type of Antigenic Stimulus. PLoS One 2010; 5(11): e15423.spa
dc.relation.referencesYang H, Garcia N, Dobos KM. Purified protein derivatives of tuberculin- -past, present, and future. FEMS Immunol Med Microbiol 2012; Dec;66(3):273-80.spa
dc.relation.referencesUrdahl KB, Shafiani S, Ernst JD. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunology 2011; 4, pages288–293.spa
dc.relation.referencesAchkar JM, Chan J, Casadevall A. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunological Reviews 2015; 264 , Número 1.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembLinfocitos
dc.subject.lembPatógeno
dc.subject.lembEnfermedad
dc.subject.lembSalud pública
dc.subject.proposalTuberculosisspa
dc.subject.proposalMycobacterium tuberculosis H37Rvspa
dc.subject.proposalVacunaspa
dc.subject.proposalMacrófagosspa
dc.subject.proposalPéptidos sintéticosspa
dc.subject.proposalCo-cultivospa
dc.subject.proposalOxido nítricospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021
Except where otherwise noted, this item's license is described as Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021