Mostrar el registro sencillo del ítem

dc.contributor.advisorSánchez Barinas, Christian David
dc.contributor.advisorHernández Rojas, Edith
dc.contributor.authorGamboa Hernández, Claudia Marcela
dc.date.accessioned2021-09-09T19:57:02Z
dc.date.available2021-09-09T19:57:02Z
dc.date.issued2021-05-20
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/2832
dc.description.abstractMycobacterium tuberculosis (Mtb) es el agente causal de la tuberculosis (TB), una enfermedad infecciosa que afecta las vías respiratorias1 . Se reporta que es la principal causa de muerte por un agente infeccioso 1, 2 . Actualmente, la vacuna BCG, única avalada por la OMS (Organización Mundial de la Salud) es utilizada para la prevención de las formas graves de TB en niños, pero su efectividad en adultos es variable1, 3. Por este motivo, en la Fundación Instituto de Inmunología de Colombia (FIDIC) se ha propuesto un modelo vacunal contra tuberculosis, basándose en la metodología lógica y racional empleada para la vacuna multiepitope sintética contra la malaria4, 5 . Se realizaron ensayos in silico para identificar el porcentaje de unión de 57 péptidos monoméricos (nativos y modificados) de Mtb a alelos DRβ1 del complejo mayor de histocompatibilidad tipo II (CMH II) de cada uno de los 18 donantes previamente genotipificados y clasificados por la prueba de diagnóstico PPD (purificate protein derivate). Luego, se desarrollaron ensayos in vitro de linfoproliferación; donde células mononucleares de sangre periférica (PBMCs), previamente marcadas con CFSE (Éster de succinimidil carboxifluoresceína) se estimularon con los péptidos de unión alelo/específica. Además, se evaluó el linaje de linfocitos T CD4 generados después de la estimulación con la identificación de factores de trascripción y citoquinas por métodos moleculares. Finalmente, se realizó la determinación del tipo de memoria inmunológica: centrales de memoria (CM), células madre de memoria (SCM) o efectoras de memoria (EM) mediante la identificación de moléculas de superficie (CD45RA, CD62L y CD45RO) características de estos tipos de células.spa
dc.description.tableofcontentsIntroducción 15 1. Planteamiento del problema 16 2. Justificación 17 3. Antecedentes 19 4. Objetivos 25 4.1 Objetivo general 25 4.2 Objetivos Específicos 25 3. Marco referencial 26 3.1 Generalidades de la tuberculosis 26 3.1.2 Epidemiología tuberculosis 26 3.1.2 Complejo Mycobacterium tuberculosis (MTB) 28 3.1.3 Diagnóstico de la tuberculosis 31 3.1.3.1 Criterio clínico: 31 3.1.3.2 Criterio microbiológico 31 3.1.3.3 Criterio radiológico 33 3.1.3.4 Criterio inmunológico 33 3.1.3.5 Pruebas moleculares 34 3.2 Presentación antigénica a través del CMH-II 35 3.3 Respuesta inmune contra Mtb 36 3.3 Linajes linfocitarios 39 3.4 Ensayo para la detección de la proliferación de linfocitos: Éster succinimidil de carboxifluoresceína (CFDASE) 42 3.5 Memoria Inmunológica 44 3.6 Modelos vacunales existentes 45 4. Diseño metodológico 47 4.1. Universo, población, muestra 47 4.2. Hipótesis, variables, indicadores. 47 4.3. Técnicas y procedimientos. 48 4.3.1 Selección de péptidos sintéticos 48 4.3.2 Análisis bioinformático de unión al CMH-II 49 4.3.3 Selección y clasificación de donantes 50 4.3.4 Síntesis de péptidos 51 4.3.5 Identificación de anticuerpos en plasma de los donantes 52 4.3.6 Ensayo de linfoproliferación 52 4.3.7 Identificación de linajes de linfocitos ayudadores 53 4.3.8 Evaluación de memoria inmunológica 56 5. Resultados 57 5.1 Análisis bioinformático de unión al CMH-II 57 5.2 Evaluación del reconocimiento de péptidos sintéticos provenientes de Mtb. 62 5.3 Determinación de la expansión clonal de linfocitos 64 5.4 Identificación de linajes de linfocitos T ayudadores 75 5.5 Evaluación de memoria inmunológica 78 6. Discusión 81 7. Conclusiones 84 Recomendaciones 85 Referencias bibliográficas 86 Anexos 91spa
dc.format.extent104p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleEstudio del papel inmunomodulador de antígenos peptídicos provenientes de Mycobacterium Tuberculosis como herramienta en la búsqueda de una vacuna contra la Tuberculosisspa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.Cspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesOrganization WH. Global Tuberculosis Report. 2020.spa
dc.relation.referencesEsmail H. BC, Young DB., Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645): 20130437.spa
dc.relation.referencesMoliva JI. TJ, Torrelles JB. Prospects in Mycobacterium bovis Bacille Calmette et Guérin (BCG) vaccine diversity and delivery: why does BCG fail to protect against tuberculosis? Vaccine. 2015;22; 33 (39):5035-41.spa
dc.relation.referencesCurtidor H. RC, Bermúdez A., Vanegas M., Varela Y., Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules. 2017; 22:2199.spa
dc.relation.referencesPatarroyo ME. CG, Vargas LE., Rosas J. Structural modifications enable conserved peptides to fit into MHC molecules thus inducing protection against malaria. Chembiochem Eur J Chem Biol. 2004;5:1588–1593.spa
dc.relation.referencesFine PE. Variation in protection by BCG: implications of and for heterologous immunity. The Lancet. 1995;346(8986):1339-45.spa
dc.relation.referencesMartino M. LL, Galli L. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr. 2019.spa
dc.relation.referencesSánchez-Barinas C. OM, Tabares L., Bermúdez M., Patarroyo MA., Patarroyo ME. Specific Binding Peptides from Rv3632: A Strategy for Blocking Mycobacterium tuberculosis to Target Cells? . BioMed Research International. 2019;1–13.spa
dc.relation.referencesCarabali-Isajar ML. OM, Rodríguez DC., Vanegas M., Curtidor H., Patarroyo MA., Patarroyo ME. Towards designing a synthetic antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells. Elservier. 2018;26 (9): 2401-2409.spa
dc.relation.referencesSánchez-Barinas CD. OM, Vanegas M. Mycobacterium tuberculosis H37Rv LpqG protein peptides can inhibit mycobacterial entry through specific interactions. Molecules. 2018;23(3).spa
dc.relation.referencesZhu J. YH, Paul W. Differentiation of Effector CD4 T Cell Populations. Annu Rev Immunol. 2010;28:445-89.spa
dc.relation.referencesSharma S. SM, Bose M. Mycobacterium tuberculosis infection of human monocyte-derived macrophages leads to apoptosis of T cells. Immunol Cell Biol. 2009;87(3):226-34.spa
dc.relation.referencesQuah B. PC. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. Nat Protoc. 2007;2(9):2049- 56.spa
dc.relation.referencesKieser KJ. RE. How sisters grow apart: mycobacteria growth and division. Nature Reviews Microbiology. 2014;12:550-62.spa
dc.relation.referencesNayak I. AB. Mantoux test and its interpretation. Indian Dermatol Online J. 2012;3(1): 2–6.spa
dc.relation.referencesDanel C. KM, Inwoley A., Badje A., Herrmann J. Quantiferon-TB Gold: Performance for Ruling out Active Tuberculosis in HIV-Infected Adults with High CD4 Count in Côte d'Ivoire, West Africa. PLoS One. 2014;9(10): 107245.spa
dc.relation.referencesSaeed M. AM, Iram S., Riaz S., Akhtaret M. GeneXpert technology: A breakthrough for the diagnosis of tuberculous pericarditis and pleuritis in less than 2 hours. Saudi Med J. 2017;38(7): 699–705.spa
dc.relation.referencesSia JK. RJ. Immunology of Mycobacterium tuberculosis infections. Microbiol Spectr. 2019;7(4): 10.1128.spa
dc.relation.referencesKaufmann SH. HG, Lambert PH. New vaccines for tuberculosis. Lancet. 2010;375(9731):2110-9.spa
dc.relation.referencesBozzano F. MF, De Maria A. Immunology of tuberculosis. Mediterranean journal of hematology and infectious diseases. Mediterr J Hematol Infect Dis. 2014;6(1).spa
dc.relation.referencesO'Garra A. RP, McNab FW., Bloom CI., Wilkinson RJ., Berry MP. The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475-527.spa
dc.relation.referencesSH K. How can immunology contribute to the control of tuberculosis? Nature reviews Immunology. Nat Rev Immunol 2001;1(1):20-30.spa
dc.relation.referencesUsman MM. IS, Teoh TC. Vaccine research and development: tuberculosis as a global health threat. Central-European journal of immunology. Cent Eur J Immunol. 2017;42(2): 196–204.spa
dc.relation.referencesZhu B. DH, Ottenhoff THM., Evans TG., Zhang Y. Tuberculosis vaccines: Opportunities and challenges. Respirology. 2018;23(4): 359–368.spa
dc.relation.referencesSchrager LK. IA, Velmurugan K. Immunopathogenesis of tuberculosis and novel mechanisms of vaccine activity. Tuberculosis. 2016;1:S3-7.spa
dc.relation.referencesRestrepo-Montoya D. VC, Niño LF., Ocampo M., Patarroyo ME., Patarroyo MA. Validating subcellular localization prediction tools with mycobacterial proteins. BMC Bioinformatics. 2009;10:134.spa
dc.relation.referencesVizcaino C. R-MD, Rodríguez D., Niño LF., Ocampo M. Computational Prediction and Experimental Assessment of Secreted/Surface Proteins from Mycobacterium tuberculosis H37Rv. PLoS Comput Biol. 2010;6 (6).spa
dc.relation.referencesCáceres SM. OM, Arévalo-Pinzón G., Jiménez RA., Patarroyo ME., Patarroyo MA. The Mycobacterium tuberculosis membrane protein Rv0180c: Evaluation of peptide sequences implicated in mycobacterial invasion of two human cell lines. Peptides. 2011;32(1):1-10.spa
dc.relation.referencesRodríguez DM. OM, Curtidor H., Vanegas M., Patarroyo ME., Patarroyo MA. Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion. Peptides. 2012;38(2):208-16.spa
dc.relation.referencesCifuentes DP. OM, Curtidor H., Vanegas M., Forero M., Patarroyo ME., Patarroyo MA. Mycobacterium tuberculosis Rv0679c protein sequences involved in host-cell infection: potential TB vaccine candidate antigen. BMC microbiology BMC Microbiol. 2010;10:109.spa
dc.relation.referencesOcampo M. RD, Rodríguez J., Bermúdez M., Muñoz CM., Patarroyo MA., Patarroyo ME. Rv1268c protein peptide inhibiting Mycobacterium tuberculosis H37Rv entry to target cells. Bioorganic & medicinal chemistry. Bioorganic and Medicinal Chemistry 2013;6650-6656.spa
dc.relation.referencesOcampo M. CH, Vanegas M., Patarroyo MA., Patarroyo ME. Specific interaction between Mycobacterium tuberculosis lipoprotein-derived peptides and target cells inhibits mycobacterial entry in vitro. Chem Biol Drug Des. 2014;84(6):626-41.spa
dc.relation.referencesPatarroyo MA. CH, Plaza DF., Ocampo M., Reyes C., Saboya O., Barrera G., Patarroyo ME. Peptides derived from the Mycobacterium tuberculosis Rv1490 surface protein implicated in inhibition of epithelial cell entry: potential vaccine candidates? Vaccine. 2008;26(34):4387-95.spa
dc.relation.referencesRodríguez D. VC, Ocampo M. Peptides from the Mycobacterium tuberculosis Rv1980c protein involved in human cell infection: insights into new synthetic subunit vaccine candidates. Biol Chem. 2010;391(2-3):207-17.spa
dc.relation.referencesForero M. PA, Cortés J. Identifying putative Mycobacterium tuberculosis Rv2004c protein sequences that bind specifically to U937 macrophages and A549 epithelial cells. Protein Sci. 2005;14(11):2767-80.spa
dc.relation.referencesOcampo M. RD, Curtidor H., Vanegas M., Patarroyo MA., Patarroyo ME. Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages. Amino Acids. 2012;42(6):2067-77.spa
dc.relation.referencesPlaza DF. CH, Patarroyo MA., Chapetón-Montes JA., Reyes C., Barreto J., Patarroyo ME. The Mycobacterium tuberculosis membrane protein Rv2560 biochemical and functional studies. FEBS J. 2007;274(24):6352-64.spa
dc.relation.referencesChapetón-Montes JA. PD, Curtidor H., Vanegas M., Forero M., Patarroyo ME., Patarroyo MA. Characterizing the Mycobacterium tuberculosis Rv2707 protein and determining its sequences which specifically bind to two human cell lines. Protein Sci. 2008;17(2): 342–351.spa
dc.relation.referencesOcampo M. A-RD, Rodríguez DM., Muñoz M., Curtidor H., Vanegas M., Patarroyo MA., Patarroyo ME. The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein Eng Des Sel. 2012;2012; 25(5):235-42.spa
dc.relation.referencesRodríguez D. OM, Varela Y., Curtidor H., Patarroyo MA., Patarroyo ME. Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. Pathog Dis. 2015;73(3).spa
dc.relation.referencesOcampo M. PM, Vanegas M, Alba MP., Patarroyo ME.,. Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine. Crit Rev Microbiol. 2014;40(2):117-45.spa
dc.relation.referencesKaufmann E. SC, Battenfeld S., Paepe D., De Paepe D., Holzhauser T., Balks E., Homolka S., Reiling N., Gilleron M., Bastian M. BCG Vaccination Induces Robust CD4+ T Cell Responses to Mycobacterium tuberculosis Complex–Specific Lipopeptides in Guinea Pigs. J Immunol. 2016;196(6):2723-32.spa
dc.relation.referencesLuckheeram RV. ZR, Verma AD., Xia B. CD4+T Cells: Differentiation and Functions. Clin Dev Immunol. 2012;2012:925135.spa
dc.relation.referencesMuranski P. RN. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121(13):2402-14.spa
dc.relation.referencesGattinoni L. RN. Moving T memory stem cells to the clinic. Blood. 2013;121(4):567.spa
dc.relation.referencesKirman JR H-TM, Agger EM. The Memory Immune Response to Tuberculosis. Microbiol Spectr. 2016;4(6).spa
dc.relation.referencesAdigun R. SR. Tuberculosis. StatPearls. 2007.spa
dc.relation.references(PAHO) PAHO. Tuberculosis. 2019.spa
dc.relation.referencesMert A. AF, Kuyucu T. Miliary tuberculosis. Medicine (Baltimore). 2017;96(5): e5875.spa
dc.relation.referencesHameed A. IM, Chhotaray C., Wang C., Liu Y., Tan Y., Li X.,. Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR- Mycobacterium tuberculosis Strains. Front Cell Infect Microbiol. 2018;10;8:114.spa
dc.relation.referencesSalud INd. Boletin epidemiológico senanal: Semana epidemiológica 38. 20 al 26 de septiembre de 2020, Colombia. 2020.spa
dc.relation.referencesForrellad MA. KL, Gioffré A. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013;4(1): 3–66.spa
dc.relation.referencesMaitra A. MT, HealyCell J. Cell wall peptidoglycan in Mycobacterium tuberculosis: An Achilles’ heel for the TB-causing pathogen. FEMS Microbiol Rev. 2019;43(5): 548–575.spa
dc.relation.referencesKaur I. GM, Skovierová H. Chapter 2: Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol. 2009;69:23-78.spa
dc.relation.referencesPorvaznik I. SI, Mokrý J.,. Non-Tuberculous Mycobacteria: Classification, Diagnostics, and Therapy. Adv Exp Med Biol. 2017;944:19-25.spa
dc.relation.referencesStamm CE CA, Shiloh MU. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev. 2015;264(1): 204–219.spa
dc.relation.referencesGarcía JG. GJ, Antuña AS. Respiratory infections caused by environmental mycobacteria. 2005;41 (4): 206-19.spa
dc.relation.referencesE. T. Microbiological Features and Clinical Relevance of New Species of the Genus Mycobacterium. Clin Microbiol Rev 2014;27(4): 727–752.spa
dc.relation.referencesPercival S. WD. Mycobacterium. Microbiology of Waterborne Diseases. 2014;Second edition.spa
dc.relation.referencesDavarpanah M. AD, Shojaei H.,. Prevalence and molecular characterization of non- tuberculous mycobacteria in hospital soil and dust of a developing country, Iran. Microbiology (Reading). 2019;165(12):1306-1314.spa
dc.relation.referencesAlexander KA. LP, Michel AL. Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg Infect Dis. 2010;16:1296–9.spa
dc.relation.referencesVan Ingen J. RZ, Mulder A. Characterization of Mycobacterium orygis as M. tuberculosis Complex Subspecies. Emerg Infect Dis. 2012;18(4): 653–655.spa
dc.relation.referencesGarcía S. A-MC, Campos-Bueno A. Diagnóstico microbiológico de la tuberculosis. 20 años en la provincia de Soria. Rendimiento y oportunidades básicas de mejora. Rev Esp Quimioter. 2018;31(2): 131–135.spa
dc.relation.referencesHeemskerk D. CM, Marais B., Farrar J. Tuberculosis in Adults and Children. Chapter 4: Diagnosis. Springer. 2015.spa
dc.relation.referencesMadhukar Pai 1 CMD, Sandra V Kik, Molebogeng X Rangaka, Alice Zwerling, Olivia Oxlade. Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3-20.spa
dc.relation.referencesFranco-Sotomayor G. R-OI, Leon-Benitez M., Uruchima-Campoverde S., Cardenas-Franco G., Perdomo-Castro M.,. Fast, Simple, and Cheap: the Kudoh-Ogawa Swab Method as an Alternative to the Petroff-Lowenstein-Jensen Method for Culturing of Mycobacterium tuberculosis. J Clin Microbiol. 2020;25;58(4):e01424-19.spa
dc.relation.referencesCondalab. OADC Enrichment Supplement for the isolation and cultivation of Mycobacteria. In: Condalab, editor. Cat 60372019.spa
dc.relation.referencesCampbell IA. B-SO. Pulmonary tuberculosis: diagnosis and treatment. BMJ. 2006;332(7551): 1194–1197.spa
dc.relation.referencesArteaga A. VME, Salazar Blanco OS. Clinical and sociodemographic characteristics of children, younger than 13 years, with or without a confirmed diagnosis of pulmonary tuberculosis, at Hospital Universitario San Vicente de Paúl, Medellín, Colombia, 2007-2008. Latreia. 2010;(23).spa
dc.relation.referencesAgapito J. NV, Castro J., Accinelli R., Rodríguez I., Espinoza J.,. Caracterización de las mutaciones en el gen rpoβ asociadas a la rifampicina en pacientes con tuberculosis pulmonar. Rev perú med exp salud publica. 2002;19(3).spa
dc.relation.referencesWieczorek M. AE, Sticht J. . Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. . Front Immunol 2017;8:292.spa
dc.relation.referencesJaneway CA. TP, Walport M. The major histocompatibility complex and its functions. Garland Science. 2001.spa
dc.relation.referencesOh J. SJ. Molecular mechanism and cellular function of MHCII ubiquitination. Immunol Rev. 2016.spa
dc.relation.referencesDF. W. Mycobacterium tuberculosis metabolism. Cold Spring Harb Perspect Med. 2015;5(4):a021121.spa
dc.relation.referencesChai Q. ZY, Hua Liu C. Mycobacterium tuberculosis: An Adaptable Pathogen Associated With Multiple Human Diseases. Front Cell Infect Microbiol. 2018;8:158.spa
dc.relation.referencesHeemskerk D. CM, Marais B., Farrar J. Tuberculosis in Adults and Children. Chapter 2: Pathogenesis. Springer. 2015.spa
dc.relation.referencesFerguson JS. WJ, Martin JL. et al. Complement Protein C3 Binding to Mycobacterium tuberculosis Is Initiated by the Classical Pathway in Human Bronchoalveolar Lavage Fluid. . Infect Immun. 2004;72(5): 2564–2573.spa
dc.relation.referencesYudhawati R. PN. The role of N-Acetyl Sistein in Pulmonary Tuberculosis. Department of Pulmonology and Respiratory Medicine. 2020;6(1).spa
dc.relation.referencesMonin L GK, Slight S, Lin Y, Rangel-Moreno J, Khader SA. Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol. 2015;8:1099–109.spa
dc.relation.referencesLin PL FJ. CD8 T cells and Mycobacterium tuberculosis infection. . Semin Immunopathol. 2015;37:239–49.spa
dc.relation.referencesJacobs AJ. MJ, Screaton GR., McShane H. Antibodies and tuberculosis. Tuberculosis. 2016;101: 102-13.spa
dc.relation.referencesTrinchieri G PS, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity. 2003;19(5):641–644.spa
dc.relation.referencesAfkarian M SJ, Yang J. T-bet is a STATI-induced regulator for IL-12R expression in naïve CD4+ T cells. Nature Immunology. 2002;3(6):549–557.spa
dc.relation.referencesNorman MU. ZL, Kubes P. . Interferon-gamma limits Th1 lymphocyte adhesion to inflamed endothelium: a nitric oxide regulatory feedback mechanism. Eur J Immunol. 2008;38(5):1368- 80.spa
dc.relation.referencesKaplan MH SU, Smiley ST, Grusby MJ. STAT6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity. 1996;4(3):313–319.spa
dc.relation.referencesBraian C. HV, Stendahl O. Mycobacterium tuberculosis - Induced Neutrophil Extracellular Traps Activate Human Macrophages. J Innate Immun. 2013;5(6):591-602.spa
dc.relation.referencesParkash O. AS, Kumar M. T regulatory cells: Achilles’ heel of Mycobacterium tuberculosis infection? Immunol Res. 2015;62(3): 386-98.spa
dc.relation.referencesS. C. Follicular helper CD4 T cells (TFH). . Annu Rev Immunol. 2011;29:621-63.spa
dc.relation.referencesQuah B. PC. The Use of Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) to Monitor Lymphocyte Proliferation. J Vis Exp. 2010;(44): 2259.spa
dc.relation.referencesParish CR. GM, Quah B. . Use of the intracellular fluorescent dye CFSE to monitor lymphocyte migration and proliferation. . Curr Protoc Immunol. 2009;Chapter 4:Unit4.9.spa
dc.relation.referencesJaneway CA Jr TP, Walport M. Immunobiology: The immune System in Health and Disease. . Garland Science. 2001;5th edition.spa
dc.relation.referencesFarber DL. YN, Restifo NP. . Human memory T cells: generation, compartmentalization and homeostasis. . Nature Reviews Immunology 2014;(14) 24–35.spa
dc.relation.referencesPoyntz HC. SE, Griffiths KL. Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis. Tuberculosis. 2014;94:226–237.spa
dc.relation.referencesYuan W. DN, Zhang L.,. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine expressing a fusion protein of Ag85B-Esat6-HspX in mice. Vaccine. 2012;30:2490–2497.spa
dc.relation.referencesJensen KK. AM, Marcatili P., Buus S., Greenbaum JA., Yan Z., Sette A., Peters B., Nielsen M. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394-406.spa
dc.relation.referencesMerrifield RB. Solid phase peptide synthesis. i. the synthesis of a tetrapeptide. . Journal of the American Chemical Society. 1963;85(14):2149–2154.spa
dc.relation.referencesVarela YF. VM, Patarroyo ME. . Synthetic Evaluation of Standard and Microwave-Assisted Solid Phase Peptide Synthesis of a Long Chimeric Peptide Derived from Four Plasmodium falciparum Proteins. . Molecules. 2018;23(11):2877.spa
dc.relation.referencesChirgwin JM. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. . Biochemistry. 1979;18, 5294–9.spa
dc.relation.referencesCorporation P. Expression Analysis In: Protocols and Applications Promega Corporation. Guide. 2005;Online Edition.spa
dc.relation.referencesEdgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Research. 2004;32(5):1792-1797.spa
dc.relation.referencesLehrach H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical re-examination. Biochemistry. 1977;16, 4743–51.spa
dc.relation.referencesMcMaster GK. CG. Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc Natl Acad Sci 1977;4835–8.spa
dc.relation.referencesPatarroyo MA., Bermúdez A., López C., Yepes G, Patarroyo ME. 3D Analysis of the TCR/pMHCII Complex Formation in Monkeys Vaccinated with the First Peptide Inducing Sterilizing Immunity against Human Malaria. Plos one 2010.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembInmunomodulador
dc.subject.lembEnfermedad infecciosa
dc.subject.lembAgente infeccioso
dc.subject.proposalMycobacterium tuberculosisspa
dc.subject.proposalLinfocitos Tspa
dc.subject.proposalPéptidosspa
dc.subject.proposalVacunaspa
dc.subject.proposalLinajes linfocitariosspa
dc.subject.proposalTuberculosisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021