Mostrar el registro sencillo del ítem

dc.contributor.advisorRosas Arango, Sonia Marcela
dc.contributor.authorRamos Porras, Thalia Verónica
dc.date.accessioned2021-09-13T20:59:38Z
dc.date.available2021-09-13T20:59:38Z
dc.date.issued2021-05-07
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/2841
dc.description.abstractLa salmonelosis aviar comprende la tifosis aviar y la pulorosis, causadas por Salmonella Gallinarum y Salmonella Pullorum respectivamente. Estas enfermedades son de especial cuidado ya que su aparición en un galpón supone sacrificar todo el lote de aves, llevando así a pérdidas económicas. Para prevenir estas enfermedades y otras de carácter bacteriano, se suelen administrar antibióticos a dosis subterapeuticas como tratamiento profiláctico y adicionalmente, para promover el crecimiento del ave; generando una exposición prolongada a los mismos, lo que favorece la aparición de cepas resistentes al afectar la microbiota intestinal y lo que pone en riesgo la salud pública. Esta monografía tiene como objetivo identificar a través de una revisión sistemática las alternativas de origen biológico con impacto en la microbiota intestinal frente a la infección por Salmonella spp en aves de corral por medio de la generación de ecuaciones de búsqueda en la base de datos ScopusTM para establecer mapas de palabras en una ventana de observación de 10 años, comprendidos entre 2011 y 2020. Los resultados mostraron que durante esta última década se ha profundizado ampliamente en la respuesta inmune a estos serovares para facilitar la búsqueda de alternativas de control, adicionalmente, los probióticos han sido más estudiados que los prebióticos y el serovar Pullorum cuenta con mucha menos bibliografía en cuanto a alternativas de control. Así, el interés por la protección intestinal biológica ha tomado fuerza en los últimos años, por lo que es importante profundizar en las posibilidades de tipo biológico por las múltiples ventajas que tienen con respecto a los antibióticos.spa
dc.description.tableofcontents1. INTRODUCCIÓN 1 2. OBJETIVOS 4 2.1 OBJETIVO GENERAL 4 2.2 OBJETIVOS ESPECÍFICOS 4 3. ANTECEDENTES 5 4. MARCO TEÓRICO 11 4.1. GENERALIDADES DE LA SALMONELOSIS AVIAR 11 4.1.1. Estructura y antigenicidad 12 4.1.2. Epidemiología 12 4.1.3. Transmisión, patogénesis y respuesta inmune 13 4.2 MECANISMOS DE CONTROL DE LA SALMONELOSIS AVIAR 16 4.2.1. Vigilancia de las aves 16 4.2.2 Medidas de prevención 19 4.2.3 Mecanismos de prevención para galpones positivos en Colombia 20 4.3 CADENA DE PRODUCCIÓN AVÍCOLA Y DATOS DE PRODUCCIÓN EN COLOMBIA 21 4.4 ESTIMULO DE PROTECCIÓN EN EL INTESTINO POR MEDIO DE FACTORES EXTERNOS 23 4.4.1 Microbiota intestinal de las aves de corral 23 4.4.2 Antibióticos promotores de crecimiento 25 4.4.3 Prebióticos 26 4.4.4 Probióticos 28 4.4.5 Otras sustancias 30 5. METODOLOGÍA 31 6. RESULTADOS 36 7. DISCUSION 47 8. CONCLUSIONES 56 9. BIBLIOGRAFÍA 57spa
dc.format.extent80p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleAlternativas de origen biológico con impacto en la Microbiota Intestinal. Una revisión frente a la infección por Salmonella Spp en aves de corral.spa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.Cspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesXu ZR, Hu CH, Xia MS, Zhan XA, Wang MQ. Effects of Dietary Fructooligosaccharide on Digestive Enzyme Activities, Intestinal Microflora and Morphology of Male Broilers [Internet]. Available from: www.oxoid.com.spa
dc.relation.referencesEeckhaut V, van Immerseel F, Dewulf J, Pasmans F, Haesebrouck F, Ducatelle R, et al. Arabinoxylooligosaccharides from wheat bran inhibit Salmonella colonization in broiler chickens. Poultry Science. 2008 Nov 1;87(11):2329–34.spa
dc.relation.referencesWillis WL, Goktepe I, Isikhuemhen OS, Reed M, King K, Murray C. The effect of mushroom and pokeweed extract on Salmonella, egg production, and weight loss in molting hens. Poultry Science. 2008 Dec 1;87(12):2451–7.spa
dc.relation.referencesTelg BE, Caldwell DJ. Efficacy testing of a defined competitive exclusion product in combination with fructooligosaccharide for protection against Salmonella Typhimurium challenge in broiler chicks. Journal of Applied Poultry Research. 2009;18(3):521–9.spa
dc.relation.referencesWillis WL, King K, Iskhuemhen OS, Ibrahim SA. Administration of mushroom extract to broiler chickens for bifidobacteria enhancement and Salmonella reduction. Journal of Applied Poultry Research. 2009;18(4):658–64.spa
dc.relation.referencesYan GL, Guo YM, Yuan JM, Liu D, Zhang BK. Sodium alginate oligosaccharides from brown algae inhibit Salmonella Enteritidis colonization in broiler chickens. Poultry Science. 2011 Jul 1;90(7):1441–8.spa
dc.relation.referencesKhodambashi Emami N, Samie A, Rahmani HR, Ruiz-Feria CA. The effect of peppermint essential oil and fructooligosaccharides, as alternatives to virginiamycin, on growth performance, digestibility, gut morphology and immune response of male broilers. Animal Feed Science and Technology. 2012 Jul 20;175(1–2):57–64.spa
dc.relation.referencesLee SI, Park SH, Ricke SC. Assessment of cecal microbiota, integron occurrence, fermentation responses, and Salmonella frequency in conventionally raised broilers fed a commercial yeast-based prebiotic compound. Poultry Science. 2016 Jan 17;95(1):144–53.spa
dc.relation.referencesMiyamoto T, Horie T, Fujiwara T, Fukata T, Sasai K, Baba E. Lactobacillus Flora in the Cloaca and Vagina of Hens and Its Inhibitory Activity Against Salmonella enteritidis In Vitro.spa
dc.relation.referencesla Ragione RM, Woodward MJ. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Veterinary Microbiology. 2003 Jul 17;94(3):245–56.spa
dc.relation.referencesVilà B, Fontgibell A, Badiola I, Esteve-Garcia E, Jiménez G, Castillo M, et al. Reduction of Salmonella enterica var. Enteritidis colonization and invasion by Bacillus cereus var. toyoi inclusion in poultry feeds. Poultry Science. 2009;88(5):975–9.spa
dc.relation.referencesZhang D, Li R, Li J. Lactobacillus reuteri ATCC 55730 and L22 display probiotic potential in vitro and protect against Salmonella-induced pullorum disease in a chick model of infection. Research in Veterinary Science. 2012 Aug;93(1):366–73.spa
dc.relation.referencesde Oliveira JE, van der Hoeven-Hangoor E, van de Linde IB, Montijn RC, van der Vossen JMBM. In ovo inoculation of chicken embryos with probiotic bacteria and its effect on posthatch Salmonella susceptibility. Poultry Science. 2014;93(4):818–29.spa
dc.relation.referencesChen C, Li J, Zhang H, Xie Y, Xiong L, Liu H, et al. Effects of a probiotic on the growth performance, intestinal flora, and immune function of chicks infected with Salmonella pullorum. Poultry Science. 2020 Nov 1;99(11):5316–23.spa
dc.relation.referencesShanmugasundaram R, Applegate TJ, Selvaraj RK. Effect of Bacillus subtilis and Bacillus licheniformis probiotic supplementation on cecal Salmonella load in broilers challenged with salmonella. Journal of Applied Poultry Research. 2020 Dec 1;29(4):808– 16.spa
dc.relation.referencesGraziani C, Losasso C, Luzzi I, Ricci A, Scavia G, Pasquali P. Salmonella. In: Foodborne Diseases: Third Edition. Elsevier Inc.; 2017. p. 133–69.spa
dc.relation.referencesPercival SL, Williams DW. Salmonella. In: Microbiology of Waterborne Diseases: Microbiological Aspects and Risks: Second Edition. Elsevier Ltd.; 2013. p. 209–22.spa
dc.relation.referencesTindall BJ, Grimont PAD, Garrity GM, Euzéby JP. Nomenclature and taxonomy of the genus Salmonella. International Journal of Systematic and Evolutionary Microbiology. 2005 Jan;55(1):521–4.spa
dc.relation.referencesRyan MP, O’Dwyer J, Adley CC. Evaluation of the Complex Nomenclature of the Clinically and Veterinary Significant Pathogen Salmonella. Vol. 2017, BioMed Research International. Hindawi Limited; 2017.spa
dc.relation.referencesGrimont PAD, Weill F-X. WHO Collaborating Centre for Reference and Research on Salmonella ANTIGENIC FORMULAE OF THE SALMONELLA SEROVARS 2007 9th edition.spa
dc.relation.referencesLamas A, Miranda JM, Regal P, Vázquez B, Franco CM, Cepeda A. A comprehensive review of non-enterica subspecies of Salmonella enterica. Vol. 206, Microbiological Research. Elsevier GmbH; 2018. p. 60–73.spa
dc.relation.referencesSu L-H, Chiu C-H. Salmonella: Clinical Importance and Evolution of Nomenclature.spa
dc.relation.referencesBrooks BW, Perry MB, Lutze-Wallace CL, MacLean LL. Structural characterization and serological specificities of lipopolysaccharides from Salmonella enterica serovar Gallinarum biovar Pullorum standard, intermediate and variant antigenic type strains. Veterinary Microbiology. 2008 Jan 25;126(4):334–44.spa
dc.relation.referencesCDC. National Enteric Disease Surveillance: Salmonella Surveillance Overview Surveillance System Overview: National Salmonella Surveillance. 2011.spa
dc.relation.referencesShivaprasad HL, Barrow P. Pullorum Disease and Fowl Typhoid. In: 13th ed. Athens, Georgia: John Wiley & Sons, Inc; 2013.spa
dc.relation.referencesFoley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars. Microbiology and Molecular Biology Reviews. 2013 Dec 1;77(4):582–607.spa
dc.relation.referencesKoerich PKV, Fonseca BB, Balestrin E, Tagliari V, Hoepers PG, Ueira-Vieira C, et al. Salmonella Gallinarum field isolates and its relationship to vaccine strain SG9R. British Poultry Science. 2018 Mar 4;59(2):154–9.spa
dc.relation.referencesOIE. Fowl typhoid and pullorum disease. In: 7th ed. WORLD ORGANISATION FOR ANIMAL HEALTH ;spa
dc.relation.referencesRevolledo L, Ferreira AJP. Current perspectives in avian salmonellosis: Vaccines and immune mechanisms of protection. Journal of Applied Poultry Research. 2012;21(2):418– 31.spa
dc.relation.referencesShah DH, Lee MJ, Park JH, Lee JH, Eo SK, Kwon JT, et al. Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature- tagged mutagenesis. Microbiology. 2005 Dec;151(12):3957–68.spa
dc.relation.referencesWigley P. Salmonella enterica serovar Gallinarum: addressing fundamental questions in bacteriology sixty years on from the 9R vaccine. Vol. 46, Avian Pathology. Taylor and Francis Ltd.; 2017. p. 119–24.spa
dc.relation.referencesBueno DJ, López ; N, Rodriguez ; F I, Procura ; F. South American broiler production and national control plans for Salmonella in chickens. Vol. 36, Rev. Agron. Noroeste Argent. 2016.spa
dc.relation.referencesCelis-Estupiñan AL del P, Batista DFA, Cardozo MV, Secundo de Souza AI, Rodrigues Alves LB, Maria de Almeida A, et al. Further investigations on the epidemiology of fowl typhoid in Brazil. Avian Pathology. 2017 Jul 4;46(4):416–25.spa
dc.relation.referencesSalaheen S, Nguyen C, Mui C, Biswas D. Bioactive berry juice byproducts as alternative and natural inhibitors for Salmonella Gallinarum and Salmonella Pullorum. Journal of Applied Poultry Research. 2015;24(2):186–97.spa
dc.relation.referencesShah DH, Elder JR, Chiok KL, Paul NC. Genetic Basis of Salmonella Enteritidis Pathogenesis in Chickens. In: Producing Safe Eggs: Microbial Ecology of Salmonella. Elsevier Inc.; 2017. p. 187–208.spa
dc.relation.referencesWigley P. Immunity to bacterial infection in the chicken. Developmental and Comparative Immunology. 2013 Nov;41(3):413–7.spa
dc.relation.referencesTang Y, Foster N, Jones MA, Barrow PA. Model of persistent Salmonella infection: Salmonella enterica serovar Pullorum modulates the immune response of the chicken from a Th17-type response towards a Th2-type response Response. Infection and Immunity. 2018 Aug 1;86(8).spa
dc.relation.referencesSetta AM, Barrow PA, Kaiser P, Jones MA. Early immune dynamics following infection with Salmonella enterica serovars Enteritidis, Infantis, Pullorum and Gallinarum: Cytokine and chemokine gene expression profile and cellular changes of chicken cecal tonsils. Comparative Immunology, Microbiology and Infectious Diseases. 2012 Sep;35(5):397–410.spa
dc.relation.referencesMarín Rodríguez E. Fiebre tifoidea y factores de virulencia de Salmonella enterica serotipo Typhi. [Madrid]; 2018.spa
dc.relation.referencesChappell L, Kaiser P, Barrow P, Jones MA, Johnston C, Wigley P. The immunobiology of avian systemic salmonellosis. Veterinary Immunology and Immunopathology. 2009 Mar 15;128(1–3):53–9.spa
dc.relation.referencesWigley P, Jones MA, Barrow PA. Salmonella enterica serovar Pullorum requires the Salmonella pathogenicity island 2 type III secretion system for virulence and carriage in the chicken. Avian Pathology. 2002 Oct;31(5):501–6.spa
dc.relation.referencesXian H, Yuan Y, Yin C, Wang Z, Ji R, Chu C, et al. The SPI-19 encoded T6SS is required for Salmonella Pullorum survival within avian macrophages and initial colonization in chicken dependent on inhibition of host immune response. Veterinary Microbiology. 2020 Nov 1;250.spa
dc.relation.referencesWigley P, Hulme SD, Powers C, Beal RK, Berchieri A, Smith A, et al. Infection of the reproductive tract and eggs with Salmonella enterica serovar Pullorum in the chicken is associated with suppression of cellular immunity at sexual maturity. Infection and Immunity. 2005 May;73(5):2986–90.spa
dc.relation.referencesSmith AL, Powers C, Beal RK. The Avian Enteric Immune System in Health and Disease. In: Avian Immunology: Second Edition. Elsevier Inc.; 2013. p. 227–50.spa
dc.relation.referencesWigley P, Hulme SD, Powers C, Beal RK, Berchieri A, Smith A, et al. Infection of the reproductive tract and eggs with Salmonella enterica serovar Pullorum in the chicken is associated with suppression of cellular immunity at sexual maturity. Infection and Immunity. 2005 May;73(5):2986–90.spa
dc.relation.referencesWigley P, Berchieri A. J, Page KL, Smith AL, Barrow PA. Salmonella enterica serovar pullorum persists in splenic macrophages and in the reproductive tract during persistent, disease-free carriage in chickens. Infection and Immunity. 2001;69(12):7873–9.spa
dc.relation.referencesAlves Batista DF, de Freitas Neto OC, de Almeida AM, Maboni G, de Carvalho TF, de Carvalho TP, et al. Evaluation of pathogenicity of Salmonella Gallinarum strains harbouring deletions in genes whose orthologues are conserved pseudogenes in S. Pullorum. PLoS ONE. 2018 Jul 1;13(7).spa
dc.relation.referencesPlan nacional de sanidad avícola. PROGRAMA DE CONTROL DE LAS MICOPLASMOSIS Y SALMONELOSIS DE LAS AVES. 2015. p. 6–7.spa
dc.relation.referencesMinistério da Agricultura P e A. SECRETARIA DE DEFESA AGROPECUÁRIA PORTARIA N [Internet]. Available from: http://www.in.gov.br/autenticidade.htmlspa
dc.relation.referencesICA. Programa Nacional de Control y Erradicación de las Salmonellas aviares (Pullorum y Gallinarum) en aves de corral dentro del territorio nacional.spa
dc.relation.referencesMinisterio de agricultura ganadería y desarrollo rural. PROGRAMA NACIONAL DE CONTROL Y ERRADICACIÓN DE LA SALMONELOSIS y SANIDAD AVIAR.spa
dc.relation.referencesSpaini G, Ydoyaga N. Plan Nacional de Sanidad y Calidad Avícola. 2010.spa
dc.relation.referencesKaterine A, Rocha M. Uso de Antimicrobianos en la Avicultura: sus Implicaciones en la Salud Pública. [Bogotá D.C]; 2012.spa
dc.relation.referencesOrtiz Rojas JK. Uso del halquinol, una mirada crítica en Colombia frente al registro de antibióticos promotores de crecimiento [Internet]. 2014. Available from: https://ciencia.lasalle.edu.co/medicina_veterinaria/15spa
dc.relation.referencesDesin TS, Köster W, Potter AA. Salmonella vaccines in poultry: Past, present and future. Vol. 12, Expert Review of Vaccines. 2013. p. 87–96.spa
dc.relation.referencesWigley P, Barrow P. Salmonella in Preharvest Chickens: Current Understanding and Approaches to Control. In: Producing Safe Eggs: Microbial Ecology of Salmonella. Elsevier Inc.; 2017. p. 139–59.spa
dc.relation.referencesRevolledo L. Vaccines and vaccination against fowl typhoid and pullorum disease: An overview and approaches in developing countries. Journal of Applied Poultry Research. 2018;27(3):279–91.spa
dc.relation.referencesDeterminantes del desarrollo en la avicultura en Colombia instituciones, organizaciones y tecnología.spa
dc.relation.referencesAvícola S, Ambiental G, El P. Guía Ambiental para el.spa
dc.relation.referencesCampo O, Romero M, Medina R. Revista Venezolana de Gerencia (RVG) Año 9. 2004;28:637–59.spa
dc.relation.referencesAlexandra Friedmann, Betsabé Weil. PRODUCCIÓN AVÍCOLA NEGOCIO EN CRECIMIENTO.spa
dc.relation.referencesFENAVI. Federación nacional de avicultores de colombia-Fenavi [Internet]. Available from: www.fenavi.orgspa
dc.relation.referencesTeng PY, Kim WK. Review: Roles of prebiotics in intestinal ecosystem of broilers. Vol. 5, Frontiers in Veterinary Science. Frontiers Media S.A.; 2018.spa
dc.relation.referencesMicciche AC, Foley SL, Pavlidis HO, McIntyre DR, Ricke SC. A review of prebiotics against Salmonella in poultry: Current and future potential for microbiome research applications. Vol. 5, Frontiers in Veterinary Science. Frontiers Media S.A.; 2018.spa
dc.relation.referencesFeye KM, Baxter MFA, Tellez-Isaias G, Kogut MH, Ricke SC. Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poultry Science. 2020 Feb 1;99(2):653–9.spa
dc.relation.referencesGadde U, Kim WH, Oh ST, Lillehoj HS. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Vol. 18, Animal Health Research Reviews. Cambridge University Press; 2017. p. 26–45.spa
dc.relation.referencesde Maesschalck C, Eeckhaut V, Maertens L, de Lange L, Marchal L, Nezer C, et al. Effects of Xylo-oligosaccharides on broiler chicken performance and microbiota. Applied and Environmental Microbiology. 2015;81(17):5880–8.spa
dc.relation.referencesGrond K, Sandercock BK, Jumpponen A, Zeglin LH. The avian gut microbiota: community, physiology and function in wild birds. Vol. 49, Journal of Avian Biology. Blackwell Publishing Ltd; 2018.spa
dc.relation.referencesWallis TS, Barrow PA. Salmonella Epidemiology and Pathogenesis in Food-Producing Animals. EcoSal Plus. 2005 Jul 25;1(2).spa
dc.relation.referencesCastanon JIR. History of the use of antibiotic as growth promoters in European poultry feeds. Vol. 86, Poultry Science. 2007. p. 2466–71.spa
dc.relation.referencesMehdi Y, Létourneau-Montminy MP, Gaucher M lou, Chorfi Y, Suresh G, Rouissi T, et al. Use of antibiotics in broiler production: Global impacts and alternatives. Vol. 4, Animal Nutrition. KeAi Communications Co.; 2018. p. 170–8.spa
dc.relation.referencesLandoni MF, Albarellos G. The use of antimicrobial agents in broiler chickens. Vol. 205, Veterinary Journal. Bailliere Tindall Ltd; 2015. p. 21–7.spa
dc.relation.referencesBroom LJ. Gut barrier function: Effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Vol. 97, Poultry Science. Oxford University Press; 2018. p. 1572–8.spa
dc.relation.referencesYadav AS, Kolluri G, Gopi M, Karthik K, Malik YS, Dhama K. Exploring alternatives to antibiotics as health promoting agents in poultry- a review. Journal of Experimental Biology and Agricultural Sciences [Internet]. 2016 May 25;4(3S):368–83. Available from: http://jebas.org/Jou.Exp.Bio.Agr.Sci/Spl.Issue.BPADDT/10.18006_2016.4(3S).368.383.p dfspa
dc.relation.referencesGaskins HR, Collier CT, Anderson DB. Antibiotics as growth promotants: Mode of action. Animal Biotechnology. 2002 May;13(1):29–42.spa
dc.relation.referencesBrown K, Uwiera RRE, Kalmokoff ML, Brooks SPJ, Inglis GD. Antimicrobial growth promoter use in livestock: a requirement to understand their modes of action to develop effective alternatives. Vol. 49, International Journal of Antimicrobial Agents. Elsevier B.V.; 2017. p. 12–24.spa
dc.relation.referencesDibner JJ, Richards JD. Antibiotic Growth Promoters in Agriculture: History and Mode of Action.spa
dc.relation.referencesPourabedin M, Zhao X. Prebiotics and gut microbiota in chickens. FEMS Microbiology Letters. 2015;362(15).spa
dc.relation.referencesGibson Y, Roberfroid MB. Dietary Modulation of the Human Colonie Microbiota: Introducing the Concept of Prebiotics [Internet]. Vol. 125, J. Nutr. 1995. Available from: https://academic.oup.com/jn/article-abstract/125/6/1401/4730723spa
dc.relation.referencesDavani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, et al. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Vol. 8, Foods. MDPI Multidisciplinary Digital Publishing Institute; 2019.spa
dc.relation.referencesGibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, et al. Dietary prebiotics: current status and new definition. Food Science & Technology Bulletin: Functional Foods. 2010 May;7(1):1–19.spa
dc.relation.referencesFilazi A, Yurdakok-Dikmen B. Nutraceuticals in Poultry Health and Disease. In: Nutraceuticals in Veterinary Medicine. Springer International Publishing; 2019. p. 661– 72.spa
dc.relation.referencesClavijo V, Flórez MJV. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Vol. 97, Poultry Science. Oxford University Press; 2018. p. 1006–21.spa
dc.relation.referencesAjuwon KM. Toward a better understanding of mechanisms of probiotics and prebiotics action in poultry species. In: Journal of Applied Poultry Research. Oxford University Press; 2016. p. 277–83.spa
dc.relation.referencesSugiharto S. Role of nutraceuticals in gut health and growth performance of poultry. Vol. 15, Journal of the Saudi Society of Agricultural Sciences. King Saud University; 2016. p. 99–111.spa
dc.relation.referencesGadde U, Kim WH, Oh ST, Lillehoj HS. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: A review. Vol. 18, Animal Health Research Reviews. Cambridge University Press; 2017. p. 26–45.spa
dc.relation.referencesRicke SC, Lee SI, Kim SA, Park SH, Shi Z. Prebiotics and the poultry gastrointestinal tract microbiome. Poultry Science. 2020 Feb 1;99(2):670–7.spa
dc.relation.referencesBailey JS, Blankenship LC, Cox NA. Effect of Fructooligosaccharide on Salmonella Colonization of the Chicken Intestine.spa
dc.relation.referencesKim GB, Seo YM, Kim CH, Paik IK. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poultry Science. 2011 Jan;90(1):75–82.spa
dc.relation.referencesAlloui MN, Szczurek W, Światkiewicz S. The usefulness of prebiotics and probiotics in modern poultry nutrition: A review. Annals of Animal Science. 2013;13(1):17–32.spa
dc.relation.referencesBouhnik Y, Flourié B, Riottot M, Bisetti N, Gailing MF, Guibert A, et al. Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutrition and Cancer. 1996;26(1):21–9.spa
dc.relation.referencesCampbell JM, Fahey GC, Wolf BW. Nutrient Metabolism Selected Indigestible Oligosaccharides Affect Large Bowel Mass, Cecal and Fecal Short-Chain Fatty Acids, pH and Microflora in Rats 1,2 [Internet]. Vol. 127, J. Nutr. 1997. Available from: https://academic.oup.com/jn/article/127/1/130/4728696spa
dc.relation.referencesNabizadeh A. The effect of inulin on broiler chicken intestinal microflora, gut morphology, and performance. Vol. 21, Journal of Animal and Feed Sciences. 2012.spa
dc.relation.referencesVidanarachchi JK, Mikkelsen LL, Constantinoiu CC, Choct M, Iji PA. Natural plant extracts and prebiotic compounds as alternatives to antibiotics in broiler chicken diets in a necrotic enteritis challenge model. Animal Production Science. 2013;53(12):1247–59.spa
dc.relation.referencesSadeghi AA, Mohammadi A, Shawrang P, Aminafshar M. Immune responses to dietary inclusion of prebiotic-based mannan-oligosaccharide and β-glucan in broiler chicks challenged with Salmonella enteritidis. Turkish Journal of Veterinary and Animal Sciences. 2013 Apr;37(2):206–13.spa
dc.relation.referencesSanders ME. Probiotics: Definition, sources, selection, and uses. In: Clinical Infectious Diseases. 2008.spa
dc.relation.referencesMousavi Khaneghah A, Abhari K, Eş I, Soares MB, Oliveira RBA, Hosseini H, et al. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Vol. 95, Trends in Food Science and Technology. Elsevier Ltd; 2020. p. 205–18.spa
dc.relation.referencesGaggìa F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Vol. 141, International Journal of Food Microbiology. 2010.spa
dc.relation.referencesMerino L, Procura F, Trejo FM, Bueno DJ, Golowczyc MA. Biofilm formation by Salmonella sp. in the poultry industry: Detection, control and eradication strategies. Vol. 119, Food Research International. Elsevier Ltd; 2019. p. 530–40.spa
dc.relation.referencesGanguly S. Supplementation of prebiotics, probiotics and acids on immunity in poultry feed: A brief review. Vol. 69, World’s Poultry Science Journal. 2013. p. 639–48.spa
dc.relation.referencesPham Thi Ngoc Lan, Mitsuo Sakamoto, Yoshimi Benno. Effects of Two Probiotic Lactobacillus Strains on Jejunal and Cecal Microbiota of Broiler Chicken under Acute Heat Stress Condition as Revealed by Molecular Analysis of 16S rRNA Genes. 2004;spa
dc.relation.referencesMountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K. Evaluation of the Efficacy of a Probiotic Containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus Strains in Promoting Broiler Performance and Modulating Cecal Microflora Composition and Metabolic Activities 1.spa
dc.relation.referencesMo` M, Pascual M, Hugas M, Badiola JI, Monfort JM, Garriga M. Lactobacillus salivarius CTC2197 Prevents Salmonella enteritidis Colonization in Chickens [Internet]. Vol. 65, APPLIED AND ENVIRONMENTAL MICROBIOLOGY. 1999. Available from: http://aem.asm.org/spa
dc.relation.referencesHaghighi HR, Gong J, Gyles CL, Hayes MA, Zhou H, Sanei B, et al. Probiotics stimulate production of natural antibodies in chickens. Clinical and Vaccine Immunology. 2006 Sep;13(9):975–80.spa
dc.relation.referencesBrisbin JT, Gong J, Parvizi P, Sharif S. Effects of lactobacilli on cytokine expression by chicken spleen and cecal tonsil cells. Clinical and Vaccine Immunology. 2010 Sep;17(9):1337–43.spa
dc.relation.referencesKabir SML, Rahman MB, Ahmed SU. The dynamics of probiotics on growth performance and immune response in broilers. 2004;spa
dc.relation.referencesYurong Y, Ruiping S, Shimin Z, Yibao J. Effect of probiotics on intestinal mucosal immunity and ultrastructure of cecal tonsils of chickens. Archives of Animal Nutrition. 2005 Aug;59(4):237–46.spa
dc.relation.referencesRaza A, Bashir S, Tabassum R. An update on carbohydrases: growth performance and intestinal health of poultry. Available from: https://doi.org/10.1016/j.heliyon.2019.e01437spa
dc.relation.referencesSlominski BA. Recent advances in research on enzymes for poultry diets. Vol. 90, Poultry Science. 2011. p. 2013–23.spa
dc.relation.referencesKhan SH, Iqbal J. Recent advances in the role of organic acids in poultry nutrition. Journal of Applied Animal Research. 2016 Jan 1;44(1):359–69.spa
dc.relation.referencesDiaz-Sanchez S, D’Souza D, Biswas D, Hanning I. Botanical alternatives to antibiotics for use in organic poultry production. In: Poultry Science. Oxford University Press; 2015. p. 1419–30.spa
dc.relation.referencesGao P, Ma C, Sun Z, Wang L, Huang S, Su X, et al. Feed-additive probiotics accelerate yet antibiotics delay intestinal microbiota maturation in broiler chicken. Microbiome. 2017 Aug 3;5(1):91.spa
dc.relation.referencesSpeksnijder DC, Mevius DJ, Bruschke CJM, Wagenaar JA. Reduction of veterinary antimicrobial use in the Netherlands. The dutch success model. Zoonoses and Public Health. 2015 Apr 1;62(s1):79–87.spa
dc.relation.referencesDittoe DK, Ricke SC, Kiess AS. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Vol. 5, Frontiers in Veterinary Science. Frontiers Media S.A.; 2018.spa
dc.relation.referencesOh JK, Pajarillo EAB, Chae JP, Kim IH, Yang DS, Kang DK. Effects of Bacillus subtilis CSL2 on the composition and functional diversity of the faecal microbiota of broiler chickens challenged with Salmonella Gallinarum. Journal of Animal Science and Biotechnology. 2017 Jan 5;8(1).spa
dc.relation.referencesZhou C, Liang J, Jiang W, He X, Liu S, Wei P. The effect of a selected yeast fraction on the prevention of pullorum disease and fowl typhoid in commercial breeder chickens. Poultry Science. 2020 Jan 1;99(1):101–10.spa
dc.relation.referencesPourabedin M, Guan L, Zhao X. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome. 2015 Apr 10;3(1).spa
dc.relation.referencesXue F, Shi L, Li Y, Ni A, Ma H, Sun Y, et al. Effects of replacing dietary Aureomycin with a combination of plant essential oils on production performance and gastrointestinal health of broilers. Poultry Science. 2020 Sep 1;99(9):4521–9.spa
dc.relation.referencesKrishan G, Narang A. Use of essential oils in poultry nutrition: A new approach. Vol. 1, Journal of Advanced Veterinary and Animal Research. Network for the Veterinarians of Bangladesh; 2014. p. 156–62.spa
dc.relation.referencesRehman H, Hellweg P, Taras D, Zentek J. Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poultry Science. 2008 Apr 1;87(4):783–9.spa
dc.relation.referencesRebolé A, Ortiz LT, Rodríguez ML, Alzueta C, Treviño J, Velasco S. Effects of inulin and enzyme complex, individually or in combination, on growth performance, intestinal microflora, cecal fermentation characteristics, and jejunal histomorphology in broiler chickens fed a wheat- and barley-based diet. Poultry Science. 2010 Feb;89(2):276–86.spa
dc.relation.referencesWu XZ, Wen ZG, Hua JL. Effects of dietary inclusion of Lactobacillus and inulin on growth performance, gut microbiota, nutrient utilization, and immune parameters in broilers. Poultry Science. 2019 Oct 1;98(10):4656–63.spa
dc.relation.referencesLi B, Schroyen M, Leblois J, Beckers Y, Bindelle J, Everaert N. The use of inulin and wheat bran only during the starter period or during the entire rearing life of broilers: effects on growth performance, small intestinal maturation, and cecal microbial colonization until slaughter age. Poultry Science. 2019 Sep 1;98(9):4058–65.spa
dc.relation.referencesWang Y, Yan X, Han D, Liu Y, Song W, Tong T, et al. Lactobacillus casei DBN023 protects against jejunal mucosal injury in chicks infected with Salmonella pullorum CMCC-533. Research in Veterinary Science. 2019 Dec 1;127:33–41.spa
dc.relation.referencesKwon HJ, Cho SH. Pathogenicity of SG 9R, a rough vaccine strain against fowl typhoid. Vaccine. 2011 Feb 1;29(6):1311–8.spa
dc.relation.referencesRosu V, Chadfield MS, Santona A, Christensen JP, Thomsen LE, Rubino S, et al. Effects of crp deletion in Salmonella enterica serotype Gallinarum. Acta Veterinaria Scandinavica. 2007;49(1).spa
dc.relation.referencesShah DH, Shringi S, Desai AR, Heo EJ, Park JH, Chae JS. Effect of metC mutation on Salmonella Gallinarum virulence and invasiveness in 1-day-old White Leghorn chickens. Veterinary Microbiology. 2007 Jan 31;119(2–4):352–7.spa
dc.relation.referencesYin J, Cheng Z, Wang X, Xu L, Li Q, Geng S, et al. Evaluation of the Salmonella enterica serovar Pullorum pathogenicity island 2 mutant as a candidate live attenuated oral vaccine. Clinical and Vaccine Immunology. 2015 Jul 1;22(7):706–10.spa
dc.relation.referencesYin J, Cheng Z, Xu L, Li Q, Geng S, Pan Z, et al. Immunogenicity and protective efficacy of Salmonella enterica serovar Pullorum pathogenicity island 2 mutant as a live attenuated vaccine candidate. BMC Veterinary Research. 2015 Jul 24;11(1).spa
dc.relation.referencesGuo R, Jiao Y, Li Z, Zhu S, Fei X, Geng S, et al. Safety, protective immunity, and DIVA capability of a rough mutant Salmonella Pullorum vaccine candidate in broilers. Frontiers in Microbiology. 2017 Apr 5;8(APR).spa
dc.relation.referencesWang Y, Huang C, Tang J, Liu G, Hu M, Kang X, et al. Salmonella Pullorum spiC mutant is a desirable LASV candidate with proper virulence, high immune protection and easy-to-use oral administration. Vaccine. 2021 Mar 1;spa
dc.relation.referencesJalava K, Hensel A, Szostak M, Resch S, Lubitz W. B acterial ghosts as vaccine candidates for veterinary applications [Internet]. Vol. 85, Journal of Controlled Release. 2002. Available from: www.elsevier.com/locate/jconrelspa
dc.relation.referencesHajam IA, Dar PA, Won G, Lee JH. Bacterial ghosts as adjuvants: Mechanisms and potential. Vol. 48, Veterinary Research. BioMed Central Ltd.; 2017.spa
dc.relation.referencesChaudhari AA, Jawale C v., Kim SW, Lee JH. Construction of a Salmonella Gallinarum ghost as a novel inactivated vaccine candidate and its protective efficacy against fowl typhoid in chickens. Veterinary Research. 2012;43(1).spa
dc.relation.referencesWon G, Chaudhari AA, Lee JH. Protective efficacy and immune responses by homologous prime-booster immunizations of a novel inactivated Salmonella Gallinarum vaccine candidate . Clinical and Experimental Vaccine Research. 2016;5(2):148.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembMicrobiota intestinal
dc.subject.lembSalmonella
dc.subject.lembAves de corral.
dc.subject.lembEnfermedades
dc.subject.proposalSalmonella Gallinarumspa
dc.subject.proposalSalmonella Pullorumspa
dc.subject.proposalPrebióticosspa
dc.subject.proposalProbióticosspa
dc.subject.proposalProducción aviarspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2021