Mostrar el registro sencillo del ítem

dc.contributor.advisorMuñoz Molina, Liliana Constanza
dc.contributor.authorPasachova Garzón, Jennifer
dc.contributor.authorRamírez Martínez, Sara
dc.date.accessioned2021-06-24T17:02:47Z
dc.date.available2021-06-24T17:02:47Z
dc.date.issued2019-12
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/288
dc.description.abstractLa resistencia bacteriana a antibióticos se ha convertido con el paso de los años en un problema de salud pública, esto por el uso indiscriminado de antibióticos; asimismo factores como la transferencia horizontal de genes de resistencia o la producción de biopelícula contribuyen al aumento de esta problemática, generando que cada vez sea más complicado dar un tratamiento para infecciones bacterianas y reduciendo el número de antibióticos efectivos para la resolución de una enfermedad y aumentando la morbimortalidad. Debido a esto se han propuesto distintos tratamientos alternativos al uso tradicional de antibióticos, uno de estos es el uso de péptidos antimicrobianos los cuales han mostrado la capacidad de inhibir el crecimiento bacteriano. Uno de los péptidos antimicrobianos más importante es el péptido LL-37 que es miembro de la familia de las catelicidinas y en el cual se ha evaluado su acción sobre bacterias Gram positivas como S. aureus mostrando resultados positivos en la inhibición de este microorganismo, es por esto que se evaluó la actividad de este péptido y sus derivados en el crecimiento y formación de biopelícula de cepas clínicas y ATCC de bacilos Gram negativos, los cuales son causantes de numerosas enfermedades a nivel mundial.spa
dc.description.abstractBacterial resistance to antibiotics has become a public health problem over the years, due to the indiscriminate use of antibiotics; Likewise, factors such as horizontal transfer of resistance genes or biofilm production contribute to the increase of this problem, making it increasingly difficult to treat bacterial infections and reducing the number of effective antibiotics for the resolution of a disease and increasing morbidity and mortality. Due to this, different alternative treatments to the traditional use of antibiotics have been proposed, one of these is the use of antimicrobial peptides which have shown the ability to inhibit bacterial growth. One of the most important antimicrobial peptides is the LL-37 peptide that is a member of the cathelicidin family and in which its action on Gram positive bacteria such as S. aureus has been evaluated showing positive results in the inhibition of this microorganism, for this reason the activity of this peptide and its derivatives in the growth and biofilm formation of clinical and ATCC strains of Gram-negative bacilli were evaluated, which are the cause of numerous diseases worldwide.eng
dc.description.tableofcontentsResumen 10 Introducción 11 Objetivos 12 Objetivo general 12 Objetivos específicos 12 Justificación 13 1.Antecedentes 14 2. Marco Referencial 18 2.1 Generalidades 18 2.1.1 E. coli 19 2.1.2 Klebsiella pneumoniae 21 2.1.3 Citrobacter freundii 21 2.1.4 Proteus 22 2.1.5 Salmonella 22 2.1.6 Yersinia 23 2.1.7 Pseudomonas 23 2.1.8 Acinetobacter 24 2.1.9 Burkholderia 24 2.2. Biopelícula 25 2.2.1 Etapas de formación de la biopelícula 25 2.2.2 Resistencia bacteriana mediada por biopelícula 26 2.3 Curvas de crecimiento bacteriano 27 2.4 Péptidos antimicrobianos 28 2.4.1 Péptido LL-37 28 3. Materiales y métodos 30 3.1 Cultivo de las bacterias 31 3.2 Escalas McFarland 31 6 3.3 Reconstitución de los péptidos 31 3.4 Curvas de crecimiento 32 3.5 Cristal violeta 33 3.6 Análisis estadístico 34 4. Resultados 34 4.1 Curvas de crecimiento 34 4.1.1 Comparación por genero bacteriano de las horas significativas de cada péptido (LL37-AC1, LL37-AC2, D-LL37 y LL37) a todas las concentraciones 35 4.1.3 Alargamiento de la fase lag 48 4.1.4 Inhibición del crecimiento 49 4.1.5 Comparación de las curvas de crecimiento por péptido 50 4.2 Cristal violeta 67 5. Discusión 69 6.Conclusiones 74 7.Referencias 76spa
dc.format.extent90p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.relation.ispartofNo objeto asociado
dc.rightsDerechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019eng
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleEfecto de los péptidos antimicrobianos derivados del LL37 en el crecimiento bacteriano y evaluación de la formación de biopelícula en cepas clínicas y ATCC de bacilos Gram negativosspa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.corporatenameUniversidad Colegio Mayor de Cundinamarcaspa
dc.contributor.researchgroupTrabajo de gradospa
dc.coverage.countryColombia
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.description.researchareaTrabajo de gradospa
dc.identifier.barcode60170
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá, Distrito Capitalspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.references1. Moreno M C, González E R, Beltrán C. Mecanismos de resistencia antimicrobiana en patógenos respiratorios 2009 [185-92]. Available from: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-48162009000200014&nrm=iso.spa
dc.relation.references2. Ministerio de Salud y Protección Social. PROGRAMA DE PREVENCIÓN, VIGILANCIA Y CONTROL DE INFECCIONES ASOCIADAS A LA ATENCIÓN EN SALUD-IAAS Y LA RESISTENCIA ANTIMICROBIANA Colombia2018 [Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/PAI/programa-iaas-ram.pdf.spa
dc.relation.references3. Lasa I, Pozo JLd, Penadés JR, Leiva J. Biofilms bacterianos e infección 2005 [163-75]. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272005000300002&nrm=iso.spa
dc.relation.references4. Laura E. Castrillón Rivera APR, * Carmen Padilla Desgarennes**. Péptidos antimicrobianos: antibióticos naturales de la piel: Rev Mex 2007 [51:7-67]. Available from: https://www.medigraphic.com/pdfs/derrevmex/rmd-2007/rmd072d.pdf.spa
dc.relation.references5. Instituto Nacional de Salud. Infecciones asociadas a dispositivos Colombia 2018 [Available from: https://www.ins.gov.co/Paginas/Inicio.aspx.spa
dc.relation.references6. María Victoria O, Sandra Yamile S, María Nilse G, Andrea Melissa H, Carolina D, Mauricio B. Resultados de la vigilancia nacional de la resistencia antimicrobiana de enterobacterias y bacilos Gram negativos no fermentadores en infecciones asociadas a la atención de salud, Colombia, 2012-2014 2017 [updated 12/01. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/3432.spa
dc.relation.references7. Sochacki KA, Barns KJ, Bucki R, Weisshaar JC. Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37 2011 [updated Apr 19PMC3080975]. 2011/04/06:[E77-81]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080975/.spa
dc.relation.references8. Moffatt JH, Harper M, Mansell A, Crane B, Fitzsimons TC, Nation RL, et al. Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37: American Society for Microbiology; 2013 [2012/12/17:[684-9]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23250952 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584870spa
dc.relation.references9. Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii 2013 [updated Nov. 2013/09/28:[131-7]. Available from: https://doi.org/10.1016/j.peptides.2013.09.007.spa
dc.relation.references10. Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation 2008 [updated SepPMC2519444]. 2008/07/02:[4176-82]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519444/pdf/0318-08.pdfspa
dc.relation.references11. Hell E, Giske CG, Nelson A, Romling U, Marchini G. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis 2010 [updated Feb. 2009/12/17:[211-5]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20002576.spa
dc.relation.references12. Fuller CA, Pellino CA, Flagler MJ, Strasser JE, Weiss AA. Shiga toxin subtypes display dramatic differences in potency: American Society for Microbiology (ASM); 2011 [2011/01/03:[1329-37]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21199911 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067513/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3067513/pdf/1182-10.pdf.spa
dc.relation.references13. Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37 2011 [PMC3131519]. 2011/07/21:[128]. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2011.00128/full.spa
dc.relation.references14. Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides 2014 [updated Dec. 2014/10/07:[32-7]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0196978114002903spa
dc.relation.references15. Shi P, Gao Y, Lu Z, Yang L. [Effect of antibacterial peptide LL-37 on the integrity of Acinetobacter baumannii biofilm] 2014 [updated Mar. 2014/03/29:[426-9]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24670464spa
dc.relation.references16. Spencer JJ, Pitts RE, Pearson RA, King LB. The effects of antimicrobial peptides WAM-1 and LL-37 on multidrug-resistant Acinetobacter baumannii 2018 [updated Mar 1. 2018/01/26:[Available from: https://doi.org/10.1093/femspd/fty007spa
dc.relation.references17. Fariñas MC, Martínez-Martínez L. Infecciones causadas por bacterias gramnegativas multirresistentes: enterobacterias, <span class="elsevierStyleItalic">Pseudomonas aeruginosa</span>, <span class="elsevierStyleItalic">Acinetobacter baumannii</span> y otros bacilos gramnegativos no fermentadores [10.1016/j.eimc.2013.03.016]. 2013 [402-9]. Available from: https://www.elsevier.es/es-revista-enfermedades-infecciosas-microbiologia-clinica-28-articulo-infecciones-causadas-por-bacterias-gramnegativas-S0213005X13000955.spa
dc.relation.references18. Cristhian H-G, Víctor MB, Gabriel M, Adriana C, Juan José M, Elsa de la C, et al. Evolución de la resistencia antimicrobiana de bacilos Gram negativos en unidades de cuidados intensivos en Colombia 2014 [updated 04/01. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1667.spa
dc.relation.references19. García Castellanos T, Castillo Marshal A, Salazar Rodríguez D. Mecanismos de resistencia a betalactámicos en bacterias gramnegativas 2014 [129-35]. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662014000100013&nrm=iso.spa
dc.relation.references20. Calderón Rojas G AUL. Resistencia antimicrobiana: microorganismos más resistentes y antibióticos con menor actividad. 2016 [Available from: https://www.medigraphic.com/pdfs/revmedcoscen/rmc-2016/rmc164c.pdfspa
dc.relation.references21. R. Vignoli VS. Principales mecanismos de resistencia antibiótica [Available from: http://www.higiene.edu.uy/cefa/2008/Principalesmecanismosderesistenciaantibiotica.pdf.spa
dc.relation.references22. Tafur JD, Torres JA, Villegas MV. Mecanismos de resistencia a los antibióticos en bacterias Gram negativas 2008 [227-32]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922008000300007&nrm=isospa
dc.relation.references23. SUÁREZ CJ, KATTÁN JN, GUZMÁN AM, VILLEGAS MV. Mecanismos de resistencia a carbapenems en P. aeruginosa, Acinetobacter y Enterobacteriaceae y estrategias para su prevención y control 2006 [85-93]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-93922006000200006&nrm=iso.spa
dc.relation.references24. Daniel AZ. E. coli BLEE, la enterobacteria que ha atravesado barreras 2015 [ 22 (2): 57-63]. Available from: .http://www.medigraphic.com/pdfs/medsur/ms-2015/ms152b.pdfspa
dc.relation.references25. Farfán-García AEA-R, Sandra Catherine Vargas-Cárdenas, Fabiola Andrea Vargas-Remolina, Lizeth Viviana. Mecanismos de virulencia de Escherichia coli enteropatógena 2016 [438-50]. Available from: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0716-10182016000400009&nrm=iso.spa
dc.relation.references26. Raúl Garza-Velasco MBG-S. La patogenia involucrada en las enfermedades diarreicas ocasionadas por ECET y ECEP [Available from: http://depa.fquim.unam.mx/bacteriologia/pdfs/ART%CDC-ECETyECEP.pdf.spa
dc.relation.references27. Puente JL, Bieber D, Ramer SW, Murray W, Schoolnik GK. The bundle-forming pili of enteropathogenic Escherichia coli: transcriptional regulation by environmental signals 1996 [updated Apr. 1996/04/01:[87-100].spa
dc.relation.references28. Vidal JE, Canizález-Román A, Gutiérrez-Jiménez J, Navarro-García F. Patogénesis molecular, epidemiología y diagnóstico de Escherichia coli enteropatógena. Salud Pública de México. 2007;49:376-86.spa
dc.relation.references29. Qadri F, Svennerholm A-M, Faruque ASG, Sack RB. Enterotoxigenic <em>Escherichia coli</em> in Developing Countries: Epidemiology, Microbiology, Clinical Features, Treatment, and Prevention 2005 [465-83]. Available from: https://cmr.asm.org/content/cmr/18/3/465.full.pdf.spa
dc.relation.references30. Arias B I, Huguet T JC. Detección Molecular de Toxinas Termoestable y Termolabil de Escherichia coli mediante Hibridación 2002 [193-6]. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342002000400005&nrm=iso.spa
dc.relation.references31. Rodríguez-Angeles G. Principales características y diagnóstico de los grupos patógenos de Escherichia coli 2002 [464-75]. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342002000500011&nrm=iso.spa
dc.relation.references32. Pasqua M, Michelacci V, Di Martino ML, Tozzoli R, Grossi M, Colonna B, et al. The Intriguing Evolutionary Journey of Enteroinvasive E. coli (EIEC) toward Pathogenicity: Frontiers Media S.A.; 2017 [2390-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29259590 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5723341spa
dc.relation.references33. RÍOS JCC. DETECCIÓN MOLECULAR DE FACTORES DE VIRULENCIA Y DIVERSIDAD GENÉTICA DE Escherichia coli AISLADA DE CONCHA DE ABANICO (Argopecten purpuratus) PROCEDENTES DEL DEPARTAMENTO DE ANCASH- PERÚ” 2018 [Available from: http://repositorio.upch.edu.pe/bitstream/handle/upch/3863/Deteccion_CarbajalRios_Joysi.pdf?sequence=1&isAllowed=y.spa
dc.relation.references34. Bai X, Mernelius S, Jernberg C, Einemo I-M, Monecke S, Ehricht R, et al. Shiga Toxin-Producing Escherichia coli Infection in Jönköping County, Sweden: Occurrence and Molecular Characteristics in Correlation With Clinical Symptoms and Duration of stx Shedding: Frontiers Media S.A.; 2018 [125-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29765909 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5939558spa
dc.relation.references35. Vila J, Vargas M, Henderson IR, Gascón J, Nataro JP. Enteroaggregative Escherichia coli Virulence Factors in Traveler's Diarrhea Strains 2000 [1780-3]. Available from: https://doi.org/10.1086/317617.spa
dc.relation.references36. Harrington SM, Dudley EG, Nataro JP. Pathogenesis of enteroaggregative Escherichia coli infection 2006 [updated Jan. 2006/02/03:[12-8].spa
dc.relation.references37. Riveros M, Barletta F, Cabello M, Durand D, Mercado EH, Contreras C, et al. Patrones de adherencia de cepas de Escherichia coli Difusamente adherente (DAEC) provenientes de niños con y sin diarrea 2011 [21-8]. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342011000100004&nrm=iso.spa
dc.relation.references38. Le Bouguénec C, Servin AL. Diffusely adherent Escherichia coli strains expressing Afa/Dr adhesins (Afa/Dr DAEC): hitherto unrecognized pathogens 2006 [185-94]. Available from: https://doi.org/10.1111/j.1574-6968.2006.00144.x.spa
dc.relation.references39. Conte MP, Longhi C, Marazzato M, Conte AL, Aleandri M, Lepanto MS, et al. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn's disease patients: phenotypic and genetic pathogenic features: BioMed Central; 2014 [748-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25338542 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210564/.spa
dc.relation.references40. Lee JG, Han DS, Jo SV, Lee AR, Park CH, Eun CS, et al. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease: Potential impact on clinical outcomes: Public Library of Science; 2019 [e0216165-e]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31034508 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6488085/.spa
dc.relation.references41. Cristina Seral, Gude MJ, Castillo FJ. Emergencia de β-lactamasas AmpC plasmídicas (pAmpC ó cefamicinasas): origen, importancia, detección y alternativas terapéuticas 2012 [25(2):89-99 ].spa
dc.relation.referencesendógena asociada a absceso hepático por Klebsiella pneumoniae. Descripción de tres casos y revisión de la literatura 2016 [228-36]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07932016000200011&nrm=iso.spa
dc.relation.references43. López Vargas JA, Echeverri Toro LM. K. pneumoniae: &iquest;la nueva ''superbacteria''? Patogenicidad, epidemiología y mecanismos de resistencia 2010 [157-65]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-07932010000200007&nrm=iso.spa
dc.relation.references44. Rapp RP, Urban C. Klebsiella pneumoniae carbapenemases in Enterobacteriaceae: history, evolution, and microbiology concerns 2012 [updated May. 2012/04/11:[399-407].spa
dc.relation.references45. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions: American Society for Microbiology; 2012 [682-707]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23034326 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485753/.spa
dc.relation.references46. Pitout JDD, Nordmann P, Poirel L. Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance: American Society for Microbiology; 2015 [2015/07/13:[5873-84]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26169401 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4576115/.spa
dc.relation.references47. Merino MF. Diseño y mecanismos de acción molecular de nuevos inhibidores de β-lactamasa [Available from: https://eprints.ucm.es/49194/1/MARIA%20FRESCO%20MERINO%20%281%29.pdf.spa
dc.relation.references48. Calvo J, Cantón R, Cuenca FF, Mirelis B, Navarro F. Detección fenotípica de mecanismos de resistencia en gramnegativos [Available from: https://www.seimc.org/contenidos/documentoscientificos/procedimientosmicrobiologia/seimc-procedimientomicrobiologia38.pdfspa
dc.relation.references49. Liu L-H, Wang N-Y, Wu AY-J, Lin C-C, Lee C-M, Liu C-P. Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes 2018 [565-72]. Available from: https://app.dimensions.ai/details/publication/pub.1086121430 https://doi.org/10.1016/j.jmii.2016.08.016.spa
dc.relation.references50. Liu L, Lan R, Liu L, Wang Y, Zhang Y, Wang Y, et al. Antimicrobial Resistance and Cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China: Frontiers Media S.A.; 2017 [1357-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28775715 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518651/.spa
dc.relation.references51. Shao Y, Xiong Z, Li X, Hu L, Shen J, Li T, et al. Prevalence of plasmid-mediated quinolone resistance determinants in Citrobacter freundii isolates from Anhui province, PR China 2011 [updated Dec. 2011/08/06:[1801-5].spa
dc.relation.references52. Liu L, Chen D, Liu L, Lan R, Hao S, Jin W, et al. Genetic Diversity, Multidrug Resistance, and Virulence of Citrobacter freundii From Diarrheal Patients and Healthy Individuals: Frontiers Media S.A.; 2018 [233-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30050870 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052900/.spa
dc.relation.references53. Eftekhar FP, Seyedpour SMM. Prevalence of qnr and aac(6')-Ib-cr Genes in Clinical Isolates of Klebsiella Pneumoniae from Imam Hussein Hospital in Tehran: Iranian Journal of Medical Sciences; 2015 [515-21]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26538780 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628142/.spa
dc.relation.references54. Trivedi M, Branton A, Trivedi D, Nayak G, Mondal S, Jana S. Phenotyping and Genotyping Characterization of Proteus vulgaris After Biofield Treatment 2015 [updated 11/09. 66-73].spa
dc.relation.references55. Hamilton AL, Kamm MA, Ng SC, Morrison M. Proteus spp. as Putative Gastrointestinal Pathogens 2018 [updated JulPMC6056842]. 2018/06/15:[spa
dc.relation.references56. Ishida H, Fuziwara H, Kaibori Y, Horiuchi T, Sato K, Osada Y. Cloning of multidrug resistance gene pqrA from Proteus vulgaris 1995 [453-7]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/7726514 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC162559/.spa
dc.relation.references57. Wang Y, Wang Y, Wu C-M, Schwarz S, Shen Z, Zhang W, et al. Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin 2011 [2521-6]. Available from: https://doi.org/10.1093/jac/dkr322.spa
dc.relation.references58. Zhang Y, Lei C-W, Wang H-N. Identification of a novel conjugative plasmid carrying the multiresistance gene cfr in Proteus vulgaris isolated from swine origin in China 2019 [updated 2019/09/06/. 102440]. Available from: http://www.sciencedirect.com/science/article/pii/S0147619X19300630spa
dc.relation.references59. Gonzalez Pedraza J, Pereira Sanandres N, Soto Varela Z, Hernández Aguirre E, Villarreal Camacho J. Aislamiento microbiológico de Salmonella spp. y herramientas moleculares para su detección 2014 [73-94]. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-55522014000100009&nrm=iso.spa
dc.relation.references60. Siriken B. [Salmonella pathogenicity islands] 2013 [updated Jan. Salmonella Patojenite Adalari; 2013/02/09:[181-8].spa
dc.relation.references61. Inda Marcela Figueroa Ochoa AVR. Mecanismos moleculares de patogenicidad de Salmonella sp 2005 [Vol. 47, No. 1-2 pp. 25 - 42 ]. Available from: medigraphic.com/pdfs/lamicro/mi-2005/mi05-1_2e.pdf.spa
dc.relation.references62. Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL, Dinsmore BA, et al. Salmonella serotype determination utilizing high-throughput genome sequencing data: American Society for Microbiology; 2015 [2015/03/11:[1685-92]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25762776 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4400759/.spa
dc.relation.references63. Quesada A, Reginatto GA, Ruiz Español A, Colantonio LD, Burrone MS. Resistencia antimicrobiana de Salmonella spp aislada de alimentos de origen animal para consumo humano 2016 [32-44]. Available from: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342016000100005&nrm=iso.spa
dc.relation.references64. Tan SY, Tan IKP, Tan MF, Dutta A, Choo SW. Evolutionary study of Yersinia genomes deciphers emergence of human pathogenic species: Nature Publishing Group; 2016 [36116-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27796355 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5086877/.spa
dc.relation.references65. Fàbrega A, Ballesté-Delpierre C, Vila J. Antimicrobial Resistance in Yersinia enterocolitica 2015 [updated 12/31. 77-104].spa
dc.relation.references66. Gaspa HR. Infección en quemadurasGaspa HR. Infección en quemadurasspa
dc.relation.references66. Gaspa HR. Infección en quemaduras 2005 [ 111 - 7]. Available from: https://www.medigraphic.com/pdfs/cplast/cp-2005/cp052h.pdfspa
dc.relation.references67. Ochoa SA, López-Montiel F, Escalona G, Cruz-Córdova A, Dávila LB, López-Martínez B, et al. Características patogénicas de cepas de Pseudomonas aeruginosa resistentes a carbapenémicos, asociadas con la formación de biopelículas 2013 [136-50]. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665-11462013000200010&nrm=iso.spa
dc.relation.references68. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies 2019 [updated Jan - Feb. 2018/12/01:[177-92].spa
dc.relation.references69. Püntener-Simmen S, Zurfluh K, Schmitt S, Stephan R, Nüesch-Inderbinen M. Phenotypic and Genotypic Characterization of Clinical Isolates Belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) Complex Isolated From Animals Treated at a Veterinary Hospital in Switzerland: Frontiers Media S.A.; 2019 [17-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30805352 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370676/.spa
dc.relation.references70. Vanegas-MÚNera JM, Roncancio-Villamil G, JimÉNez-Quiceno JN. Acinetobacter baumannii: importancia clínica, mecanismos de resistencia y diagnóstico 2014 [233-46]. Available from: https://www.redalyc.org/articulo.oa?id=261132654008spa
dc.relation.references71. Villalón P, Ortega M, Sáez-Nieto JA, Carrasco G, Medina-Pascual MJ, Garrido N, et al. Dynamics of a Sporadic Nosocomial Acinetobacter calcoaceticus - Acinetobacter baumannii Complex Population: Frontiers Media S.A.; 2019 [593-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30967856 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6440288/.spa
dc.relation.references72. Pestaña MÍ, del Pozo JL. Infecciones por bacilos Gram negativos no fermentadores: Pseudomonas aeruginosa, Acinetobacter spp. y Stenotrophomonas maltophilia 2018 [updated 2018/03/01/. 2931-40]. Available from: http://www.sciencedirect.com/science/article/pii/S0304541218300337.spa
dc.relation.references73. Viñas AM. aspectos microbiológicos de Burkholderia cepacia complex en pacientes con fibrosis quística: Universidad Autonoma De Barcelona. ; 2015 [Available from: https://ddd.uab.cat/pub/tesis/2015/hdl_10803_329293/amv1de1.pdf.spa
dc.relation.references74. Sánchez Hernández G. Confirmación de un brote de bacteriemia por Burkholderia cepacia en una unidad de cuidados intensivos pediátricos mediante biología molecular Universidad Nacional Autonoma de Mexico 2011.spa
dc.relation.referencesUniversidad Nacional Autonoma de Mexico 2011. 75. Rojas-Rojas FU, López-Sánchez D, Meza-Radilla G, Méndez-Canarios A, Ibarra JA, Estrada-de los Santos P. El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos 2019 [updated 2019/01/01/. 84-92]. Available from: http://www.sciencedirect.com/science/article/pii/S0325754118300038.spa
dc.relation.references76. Butt AT, Thomas MS. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species: Frontiers Media S.A.; 2017 [460-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29164069 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681537/spa
dc.relation.references77. Rhodes KA, Schweizer HP. Antibiotic resistance in Burkholderia species 2016 [2016/07/30:[82-90]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27620956 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5022785/.spa
dc.relation.references78. Díaz Caballero AJ, Vivas Reyes R, Puerta L, Ahumedo Monterrosa M, Arévalo Tovar L, Cabrales Salgado R, et al. Biopelículas como expresión del mecanismo de quorum sensing: Una revisión 2011 [195-201]. Available from: http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1699-65852011000300005&nrm=isospa
dc.relation.references79. Nazar C J. Biofilms bacterianos 2007 [161-72]. Available from: https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S0718-48162007000100011&nrm=iso.spa
dc.relation.references80. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections 2018 [updated Jan. 2017/10/19:[7-11].spa
dc.relation.references81. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. Biofilm, pathogenesis and prevention--a journey to break the wall: a review 2016 [updated Jan. 2015/09/18:[1-15]spa
dc.relation.references82. Loera Muro A, Ramírez Castillo FY, Avelar González FJ, Guerrero Barrera AL. Biopelículas multi-especie: asociarse para sobrevivir 2012 [49-56]. Available from: https://www.redalyc.org/articulo.oa?id=67424408007.spa
dc.relation.references83. Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents 2015 [2015/04/16:[493-512].spa
dc.relation.references84. Cooper S. Bacterial Growth and Division: Biochemistry and Regulation of Prokaryotic and Eukaryotic Division Cycles: Elsevier Science; 2012.spa
dc.relation.references85. Jurtshuk P, Jr. Bacterial Metabolism. In: th, Baron S, editors. Medical Microbiology. Galveston (TX): University of Texas Medical Branch at Galveston The University of Texas Medical Branch at Galveston.; 1996.spa
dc.relation.references86. Varela G. FISIOLOGIA Y METABOLISMO BACTERIANO [Available from: http://www.higiene.edu.uy/cefa/Libro2002/Cap%2011.pdf.spa
dc.relation.references87. Merino LA. Fisiología bacteriana Universidad Nacional del Nordeste [Available from: http://isft194.edu.ar/wp-content/uploads/2013/03/APUNTE-Metabolismo-bacteriano.pdf.spa
dc.relation.references88. Jesús Ramírez Santos GCF, ** M. Carmen Gómez Eichelmann*. La fase estacionaria en la bacteria Escherichia coli 2005 [Vol. 47, No. 3-4]. Available from: https://www.medigraphic.com/pdfs/lamicro/mi-2005/mi05-3_4f.pdf.spa
dc.relation.references89. Lakshmaiah Narayana J, Chen JY. Antimicrobial peptides: Possible anti-infective agents 2015 [updated Oct. 2015/06/07:[88-94].spa
dc.relation.references90. Zhang L-j, Gallo RL. Antimicrobial peptides: Elsevier; 2016 [R14-R9]. Available from: https://doi.org/10.1016/j.cub.2015.11.017.spa
dc.relation.references91. Mangoni ML, McDermott AM, Zasloff M. Antimicrobial peptides and wound healing: biological and therapeutic considerations 2016 [2016/02/10:[167-73]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26738772 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789108/.spa
dc.relation.references92. Agier J, Efenberger M, Brzezińska-Błaszczyk E. Cathelicidin impact on inflammatory cells. Cent Eur J Immunol. 2015;40(2):225-35.spa
dc.relation.references93. Zeth K, Sancho-Vaello E. The Human Antimicrobial Peptides Dermcidin and LL-37 Show Novel Distinct Pathways in Membrane Interactions. Frontiers in Chemistry. 2017;5(86spa
dc.relation.references94. Frohm M, Agerberth B, Ahangari G, Stahle-Backdahl M, Liden S, Wigzell H, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders 1997 [updated Jun 13. 1997/06/13:[15258-63].spa
dc.relation.references95. Yang SC, Hwang TL. The potential impacts of formyl peptide receptor 1 in inflammatory diseases. Front Biosci (Elite Ed). 2016;8:436-49.spa
dc.relation.references96. Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock REW. The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses 2002 [3883-91]. Available from: https://www.jimmunol.org/content/jimmunol/169/7/3883.full.pdf.spa
dc.relation.references97. Levast B, Hogan D, van Kessel J, Strom S, Walker S, Zhu J, et al. Synthetic Cationic Peptide IDR-1002 and Human Cathelicidin LL37 Modulate the Cell Innate Response but Differentially Impact PRRSV Replication in vitro: Frontiers Media S.A.; 2019 [233-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/31355218 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640542/.spa
dc.relation.references98. Jiang Z, Higgins MP, Whitehurst J, Kisich KO, Voskuil MI, Hodges RS. Anti-tuberculosis activity of α-helical antimicrobial peptides: de novo designed L- and D-enantiomers versus L- and D-LL-37 2011 [241-52]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/20858205 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263701/.spa
dc.relation.references99. Dean SN, Bishop BM, van Hoek ML. Susceptibility of Pseudomonas aeruginosa Biofilm to Alpha-Helical Peptides: D-enantiomer of LL-37: Frontiers Research Foundation; 2011 [128-]. Available from: https://www.ncbi.nlm.nih.gov/pubmed/21772832 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131519/.spa
dc.relation.references00. Aghazadeh H, Memariani H, Ranjbar R, Bagheri KP. The activity and action mechanism of novel short selective LL‐37‐derived anticancer peptides against clinical isolates of Escherichia coli: Wiley Online Library; 2019 [75-83]. Available from: https://doi.org/10.1111/cbdd.13381.spa
dc.relation.references101. Schultz D, Kishony R. Optimization and control in bacterial Lag phase 2013 [updated 12/16. 120].spa
dc.relation.references102. Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L. Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL‐37. Molecular Microbiology. 2002;46(1):157-68.spa
dc.relation.references103. Strömstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother. 2009;53(2):593-602.spa
dc.relation.references104. Chu D, Barnes DJ. The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate. Sci Rep. 2016;6(1):25191.spa
dc.relation.references105. Park S-C, Park Y, Hahm K-S. The Role of Antimicrobial Peptides in Preventing Multidrug-Resistant Bacterial Infections and Biofilm Formation. International Journal of Molecular Sciences. 2011;12(9):5971-92.spa
dc.relation.references106. Torlak E, Korkut E, Uncu AT, Şener Y. Biofilm formation by Staphylococcus aureus isolates from a dental clinic in Konya, Turkey. Journal of Infection and Public Health. 2017;10(6):809-13.spa
dc.relation.references107. Muñoz L, Guevara F, Salazar F, Navarrete J, Pinilla G. Péptidos antimicrobianos análogos a la catelicidina humana ll-37. Diario de campo. 2018;3:190-206spa
dc.relation.references108. Liu W, Chen Y, Ming X, Kong Y. Design and Synthesis of a Novel Cationic Peptide with Potent and Broad-Spectrum Antimicrobial Activity. BioMed Research International. 2015;1-6.spa
dc.relation.references109. Ortega S, Ceron G. Producción de biopelículas y Resistencia antimicrobiana en uropatógenos aislados de catéteres urinarios en un hospital de rehabilitación física. Investigación en discapacidad. 2017;6(3):116-121.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembAgentes antibacteriales
dc.subject.lembMicrobiología
dc.subject.lembResistencia a los medicamentos en microorganismos
dc.subject.proposalResistencia bacterianaspa
dc.subject.proposalBacilos Gram negativosspa
dc.subject.proposalBiopelículaspa
dc.subject.proposalPéptidos antimicrobianosspa
dc.subject.proposalLL-37spa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019