Mostrar el registro sencillo del ítem

dc.contributor.advisorRomero Otero, Adriana Rocío
dc.contributor.advisorSánchez Leal, Ligia Consuelo
dc.contributor.authorRiveros Fraile, Natalia
dc.contributor.authorRosero Calderón, Rubí Alejandra
dc.date.accessioned2021-06-30T16:04:39Z
dc.date.available2021-06-30T16:04:39Z
dc.date.issued2019-11
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/308
dc.description.abstractUna amplia diversidad de organismos marinos han demostrado ser una fuente alternativa de microorganismos biocontroladores; debido a la producción de metabolitos con actividad biológica que pueden ser aplicados para el manejo de fitopatógenos. En Colombia, la antracnosis en los cultivos de fresa, origina hasta el 70% de pérdidas en campo y continúa su ciclo en postcosecha. El objetivo de este trabajo fue evaluar el potencial biocontrolador de aislamientos microbianos obtenidos de macroorganismos marinos para el manejo del hongo fitopatógeno Colletotrichum spp. en plantas de fresa. Se procesaron 84 muestras de zonas costeras del caribe colombiano, para aislar y purificar diferentes microorganismos con los que se conformó un cepario. Posteriormente, se evaluaron mediante técnicas In vitro (difusión en placa, enfrentamiento directo y ensayos de inoculación en hoja) para determinar su potencial antifúngico contra Colletotrichum spp. Los resultados permitieron seleccionar dos aislamientos bacterianos (478 y 484) y un aislamiento fúngico (34) según su efectividad durante las pruebas. La clasificación taxonómica de estos microorganismos, se realizó a través de caracterización fenotípica y molecular. Las dos bacterias pertenecen al género Serratia mientras que el hongo pertenece al género Neoscytalidium siendo cercano a la especie N. dimidiatum. Los resultados de este trabajo contribuyen al estudio de tratamientos alternativos para el control biológico de fitopatógenos. Sin embargo, es necesario realizar otros estudios que complementen estos hallazgos, con el fin de obtener un producto viable que permita proteger los cultivos de fresa contra la antracnosis, favoreciendo la actividad agrícola, la economía y la importación de Colombia.spa
dc.description.abstractA wide diversity of marine organisms have been an alternative source of biocontroller microorganisms; due to the production of metabolites with biological activity that can be applied for the management of phytopathogens. In Colombia, anthracnose in strawberry crops, causes up to 70% of losses in the field and continues its cycle in postharvest. The objective of this work was to evaluate the biocontroller potential of microbial isolates detected from marine macro-organisms for the management of the phytopathogenic fungus Colletotrichum spp. in strawberry plants. 84 samples from coastal areas of the Colombian Caribbean were processed to isolate and purify different microorganisms with which a cepary is formed. Subsequently, it is evaluated using in vitro techniques (plate diffusion, direct confrontation and leaf inoculation assays) to determine its antifungal potential against Colletotrichum spp. The results allowed to select two bacterial isolates (478 and 484) and a fungal isolation (34) according to their modification during the tests. The taxonomic classification of these microorganisms was carried out through phenotypic and molecular characterization. The two bacteria belonging to the genus Serratia while the fungus belongs to the genus Neoscytalidium being close to the species N. dimidiatum. The results of this work refer to the study of alternative treatments for the biological control of phytopathogens. However, it is necessary to carry out other studies that complement these findings, in order to obtain a viable product that allows to protect strawberry crops against anthracnose, favoring the agricultural activity, the economy and the importation of Colombia.eng
dc.description.tableofcontentsResumen 11 1. Introducción 15 2. Objetivos 17 3. Antecedentes 18 4. Marco referencial 22 4.1. Características generales de la fresa 22 4.1.1. Características morfo-fisiológicas 22 4.1.2. Condiciones del cultivo 23 4.1.3. Cultivo de fresa en Colombia 24 4.1.4. Problemas fitosanitarios asociados al cultivo 25 4.2. Características generales del género Colletotrichum spp. 26 4.2.1. Clasificación taxonómica 27 4.2.2. Características macroscópicas y microscópicas del género Colletotrichum spp. 27 4.2.3. Ciclo de vida de Colletotrichum spp. 29 4.3. Antracnosis por Colletotrichum spp. en fresa (Fragaria sp.) 30 4.4. Manejo integrado de antracnosis en el cultivo de fresa 31 4.5. Ambientes marinos como fuente de microorganismos marinos 33 4.5.1. Características generales de ambientes marinos 33 4.5.2. Ambientes marinos en Colombia 34 4.6. Bacterias aisladas de ambientes marinos con actividad Antimicrobiana 35 4.7. Hongos aislados de ambientes marinos con actividad Antimicrobiana 36 5. Diseño metodológico 38 5.1. Universo, población y muestra 38 5.2. Hipótesis, variables e indicadores 39 5.3. Técnicas y procedimientos 40 5.3.1. Generación de la colección de microorganismos marinos 41 5.3.2. Evaluación in vitro de la actividad antifúngica de los microorganismos seleccionados frente a Colletotrichum sp. 46 5.3.3. Ensayo en hojas de la actividad antifúngica de los microorganismos obtenidos. 49 5.3.4. Identificación de los microorganismos seleccionados por observación macroscópica, microscópica y pruebas bioquímicas 52 5.3.5. Caracterización de microorganismos con actividad antifúngica frente a Colletotrichum sp 53 6. Resultados 54 6.1. Generación de la colección de microorganismos marinos 54 6.2. Evaluación in vitro de la actividad antifúngica de los microorganismos seleccionados 55 6.3. Evaluación in vivo de la actividad antifúngica de los microorganismos seleccionados 57 6.4. Identificación de los microorganismos seleccionados por observación macroscópica, microscópica y pruebas bioquímicas 61 6.5. Caracterización de microorganismos con actividad antifúngica frente a Colletotrichum sp 64 7. Discusión 67 8. Referencias 74 9. Anexos 83spa
dc.format.extent97p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.relation.ispartofNo objeto asociado
dc.rightsDerechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleAislamiento y caracterización de microorganismos procedentes de macroorganismos marinos colombianos, como agentes biocontroladores de colletotrichum spp causante de antracnosis en fresa (fragaria sp)spa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.corporatenameUniversidad Colegio Mayor de Cundinamarcaspa
dc.contributor.researchgroupTrabajo de gradospa
dc.coverage.cityzonas costeras del caribe colombiano
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.description.researchareaTrabajo de gradospa
dc.identifier.barcode60187
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá, Distrito Capitalspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.references1. Gañán L, Álvarez E, Zapata J. Genetic identification of Colletotrichum isolates causing anthracnose in fruits of avocado, banana, mango and tamarillo. Rev. acad. colomb. cienc. exact. fis. nat. [Internet]. 2015; 39(152): 211-218 [Cited 2018 Oct 29]. Available at: doi:http://dx.doi.org/10.18257/raccefyn.192spa
dc.relation.references2. Landero N, Lara F, Andrade P, Aguilar L, Aguado A. Alternativas para el control de Colletotrichum spp. Rev. Mex. Cienc Agríc. [Internet]. 2016; 7 (5): 1189-1198. [Citado 2018 oct 24] Disponible en: doi: 10.29312/remexca.v7i5.245spa
dc.relation.references3. Giraldo N, Bustamante S, Pinzón Y, Buitrago G. Molecular characterization of Colletotrichum gloeosporioides isolated from yam plants of Colombia Atlantic Coast using DNA Amplification Fingerprinting technique (DAF) Rev.Colomb.Biotecnol. [Internet] 2016; 18 (1): 95–103 [Cited 2018 oct 24]. Available at: doi: 10.15446/rev.colomb.biote.v18n1.57720spa
dc.relation.references4. España M, Arboleda J, Ribeirod J, Abdelnurd P, Guzmán J. Eucalyptus leaf byproduct inhibits the anthracnose-causing fungus Colletotrichum gloeosporioides Industrial Crops & Products. [Internet]. 2017; (108) 793-797. [Cited 2018 oct 24]. Available at: doi:https://doi.org/10.1016/j.indcrop.2017.08.002spa
dc.relation.references5. Górski R, Sobieralski K, Siwulski M, Frąszczak B, Sas I. The effect of Trichoderma isolates, from family mushroom growing farms, on the yield of four Agaricus bisporus (Lange) Imbach strains. Journal of Plant Protection Research. [Internet] 2014; 54 (1): 102–105 [Cited 2018 oct 30]. Available at: doi:https://doi.org/10.2478/jppr-2014-0016spa
dc.relation.references6. Fouillaud M, Venkatachalam M, Girard-Valenciennes E, Caro Y, Du Fossé L. Anthraquinones and derivatives from marine-derived fungi: Structural diversity and selected biological activities. Mar Drugs. [Internet]. 2016; 14(4): 64. [Cited 2018 oct 30]. Available at: doi: 10.3390/md14040064.spa
dc.relation.references7. De Felício, R, Pavão GB, De Oliveira et al. Antibacterial, antifungal and cytotoxic activities exhibited by endophytic fungi from the Brazilian marine red alga Bostrychia tenella (Ceramiales). Rev. bras. farmacogn. [Internet]. 2015; 25:641–650 [Cited 2018 Oct 24]. Available at: doi: http://dx.doi.org/10.1016/j.bjp.2015.08.003spa
dc.relation.references8. Santos S, Folter S, Délano J, Gómez M, Guzmán D, Sánchez P, et al. Puntos críticos en el manejo integral de mango: floración, antracnosis y residuos industriales. Rev. Mexicana de Ciencias Agrícolas. [Internet]. 2011 2; (2): 221-234 [Citado 2018 oct 27]. Disponible en: doi: http://www.scielo.org.mx/pdf/remexca/v2n2/v2n2a4.pdfspa
dc.relation.references9. Puerto A, Suárez S, Palacio D. Efectos de los plaguicidas sobre el ambiente y la salud. Rev Cubana Hig Epidemiol [Internet]. 2014; 52 (3): 372-387. [Citado 2018 Oct 27]. Disponible en: http://scielo.sld.cu/pdf/hie/v52n3/hig10314.pdfspa
dc.relation.references10. Munhuweyia K, Caleb O, Lennox C, Reenen A, Opara L.In vitro and in vivo antifungal activity of chitosan-essential oils against pomegranate fruit pathogens. POSTHARVEST BIOL TEC. [Internet]. 201spa
dc.relation.references10. Munhuweyia K, Caleb O, Lennox C, Reenen A, Opara L.In vitro and in vivo antifungal activity of chitosan-essential oils against pomegranate fruit pathogens. POSTHARVEST BIOL TEC. [Internet]. 2017, 129: 9-22. Available at: https://doi.org/10.1016/j.postharvbio.2017.03.002spa
dc.relation.references11. Hromis N, Lazic V. Popovic S, Markov S, Vastag Z, Suput D. Investigation of a product-specific active packaging material based on chitosan biofilm with spice oleoresins. J FOOD NUTR.[Internet].2016; 55 (1):78-88. Available at: DOI: 10.1016/j.foodhyd.2010.07.022. 15. DIN 53380-2:2006-11spa
dc.relation.references12. Vilaplana R, Pazmiño L, Valencia S. Control of anthracnose, caused by Colletotrichum musae, on postharvest organic banana by thyme oil. Postharvest Biol. Technol. [Internet]. 2018 (138): 56-63 [Cited 2018 Oct 24]. Available at: doi: https://doi.org/10.1016/j.postharvbio.2017.12.008spa
dc.relation.references13. Pérez A,Vitola D, Chamorro L. Activity of essential oil of basil (Ocimum basilicum) against Colletotrichum gloeosporioides of yam (Discorea alata). Rev. U.D.CA Act. & Div. Cient. [Internet]. 2018; 21 (1): 99 - 108 [Cited 2018 Oct 24]. Available at: doi:10.31910/rudca.v21.n1.2018.667spa
dc.relation.references14. Rashida T, Awlab H, Sijam K. Antifungal effects of Rhus coriaria L. fruit extracts against tomato anthracnose caused by Colletotrichum acutatum. IND CROP PROD. [Internet]. 2018; 113: 391–397. [Cited 2018 Oct 24]. Available at: https://doi.org/10.1016/j.indcrop.2018.01.066spa
dc.relation.references15. Lara F, Nieto D, Nava C, Gutiérrez G, Ayala Ó, Aguilar A et al. Efecto del glucorafano aislado de floretes de brócoli sobre la germinación de esporas de Colletotrichum gloeosporioides. Rev. Fitotec. Mex. [Internet]. 2014; 37 (2): 141 - 147. [Consultado 2018 Oct 27]. Disponible en: http://www.scielo.org.mx/pdf/rfm/v37n2/v37n2a5.pdfspa
dc.relation.references16. Karimi, K, Babai Ahari, Arzanlou M, Amini J, Pertot I. Comparison of indigenous Trichoderma spp. strains to a foreign commercial strain in terms of biocontrol efficacy against Colletotrichum nymphaeae and related biological features. J PLANT DIS PROTECT. [Internet]. 2017; 124 (5): 453-466. [Cited 2018 Oct 24]. Available at: 0.1007 / s41348-017-0088-6spa
dc.relation.references17. Guardado L, Tovar E, Chacón A, López U, et al. Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana). Microbiol. Res. [Internet]. 2018; (210) 26–32. [Cited 2018 Oct 24]. Available at: doi: 10.1016/j.micres.2018.01.007.spa
dc.relation.references18. Lima J, Gondime D. Oliveira J,Oliveira, Goncalves L, Viana F. Use of killer yeast in the management of postharvest papaya anthracnose. Postharvest Biol 78 Technol. [Internet]. 2013; 83: 58-64. [Cited 2018 Oct 24]. Available at: https://doi.org/10.1016/j.postharvbio.2013.03.014spa
dc.relation.references19. Qing F, Shiping T. Postharvest Biological Control of Rhizopus Rot of Nectarine Fruits by Pichia membranefaciens. Plant Dis. [Internet]. 2007; 84 (11): 58-64. [Cited 2018 Oct 24]. Available at: https://doi.org/10.1094/PDIS.2000.84.11.1212spa
dc.relation.references20. Bergmann W, Feeney R.The isolation of a new thymine pentoside from sponges.J. Am. Chem. Soc. [Internet]. 1950. Jun; 7 (26) 2809-2810. [Cited 2019 Jun 20]. Available at: doi: https://doi.org/10.1021/ja01162a543.spa
dc.relation.references21. Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E. Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res. [Internet]. 2018, 32 (16): 1926 – 50. Aug 18 [Cited 2019 Jun 5]; Available at: https://www.tandfonline.com/doi/full/10.1080/14786419.2017.1356838spa
dc.relation.references22. Croll A, Copp B, Davis R, Keyzers R, Prinsep M. Marine natural products. Nat. Prod. Rep. [Internet]. 2019; 36: 122-173. [Cited 2019 jun 20]. Available at: https://doi.org/10.1039/C8NP00092Aspa
dc.relation.references23. Biswas K, Dipak P, Narayan S. Marine Bacteria: A Potential Tool for Antibacterial Activity. J Appl Environ Microbiol. [Internet]. 2016; 4(1): 25-29. [Cited 2018 Oct 25]. Available at: doi: 10.12691/jaem-4-1-3spa
dc.relation.references24. Giampieri F, S. Tulipani J, Alvarez J, Quiles B, Mezzetti D. The strawberry: composition, nutritional quality, and impact on human health. Nutrition 2. [Internet]. 2012; 28 (1): 9-19 [Cited 2019 Mar 02]. Available at: doi: 10.1016/j.nut.2011.08.009.spa
dc.relation.references25. Manual técnico del cultivo de fresa bajo buenas prácticas agrícolas.[Internet].[Consultado 2019 mar 02]. Disponible en: https://conectarural.org/sitio/sites/default/files/documentos/fresa%20BPA_1.pdfspa
dc.relation.references26. Cámara de comercio de Bogotá. Manual Fresa [Internet] [Citado 2018 Oct 29]. Disponible en: http://hdl.handle.net/11520/14312spa
dc.relation.references27. Angulo R. Cartilla fresa. (Fragaria ananassa). Bayer. [Internet]. 2009. [Citado 2018 Oct 29]. Disponible en: https://www.cropscience.bayer.co/~/media/Bayer%20Crospa
dc.relation.references28. Ministerio de Agricultura y desarrollo rural. Reporte: Área, Producción y Rendimiento Nacional por Cultivo. Agronet. [Internet]. [Citado: 02 2019 Mar 02]. Disponible en: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1spa
dc.relation.references29. Cortes Paniagua R. Propuesta técnica ambiental para asegurar la inocuidad de fresas cultivadas en Cartago. Tesis Mg. San José Costa Rica. [Internet] 2011. [Citado 2019 Mar 03]. Disponible en: http://www.uci.ac.cr/ Biblioteca/Tesis/PFGMIA72.pdf.spa
dc.relation.references30. Rubio S, Alfonso A, Grijalba C, Mercedes M. Determinación de los costos de producción de la fresa cultivada a campo abierto y bajo macrotúnel. Revista Colombiana de ciencias hortícolas .[Internet]. 2014; 8 (1): 67-79. [Citado 2019 Mar 02]. Disponible en: https://doi.org/10.17584/rcch.2014v8i1.2801spa
dc.relation.references31. Rojo I, García R, Sañudo A, León J, Allende R. Proceso de infección de antracnosis por Colletrotrichum truncatum en papaya maradol. Rev. Bras. Frutic. [Internet]. 2017; 39: 379. [Citado 2019 Mar 02]. Disponible en: http://dx.doi.org/10.1590/0100-29452017379spa
dc.relation.references32. Wang, CH, Jiang, ZT, Huang, RJ, Shi, GC, Wang, PP, Xue L. The occurrence and control to strawberry anthracnose in China. Bayer. [Internet]. 2017; 1156: 797-799. [Cited 2019 Abr 29]. Available at:http://dx.doi.org/10.17660/ActaHortic.2017.1156.117spa
dc.relation.references33. Damm U, Cannon P, Woudenberg J, Johnston P, Weir B, Tan Y, et al.The Colletotrichum boniense species complex. Stud Mycol. NCBI .[Internet]. 2012; 73 (1): 1 - 36. [Cited 2019 Mar 09]. Available at: http://doi: 10.3114/sim0002spa
dc.relation.references34. Jayawardena R, Hyde K, Damm U, Cai L, Liu M, Li X, et al. Notes on currently accepted species of Colletotrichum. Mycosphere. [Internet]. 2016; 7 (8): 1192-1260. [Cited 2019 Mar 09]. Available at: Doi 10.5943/mycosphere/si/2c/9spa
dc.relation.references35. Zhang L, Huang X, He C, Zhang Q, Zou X, Duan K, Gao Q. Novel Fungal Pathogenicity and Leaf Defense Strategies Are Revealed by Simultaneous Transcriptome Analysis of Colletotrichum fructicola and Strawberry Infected by This Fungus. Front. Plant Sci. [Internet]. 2018; 25 (9): 434. [Cited 2019 Mar 09]. Available at: doi: 10.3389/fpls.2018.00434.spa
dc.relation.references36. Beltrán M, García D. Colletrotrichum gloeosporioides fitopatógeno asociado a la nutrición humana. UAEM. [Internet]. 2006;8(13):73-80. [Consultado 2019 Mar 02] Disponible en: https://www.redalyc.org/articulo.oa?id=239017515006spa
dc.relation.references37. Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L. Colletotrichum higginsianum as a Model for Understanding Host⁻Pathogen Interactions: A Review. Int J Mol Sci. [Internet]. 2018; 23: 19 (7): 2142. [Cited 2019 Mar 02] Available at: https://doi.org/10.3390/ijms19072142spa
dc.relation.references38. Xu X, Wang Y, Tian C, Liang Y. The Colletotrichum gloeosporioides RhoB regulates cAMP and stress response pathways and is required for pathogenesis. Fungal Genet Biol. [Internet]. 2016; 96: 12-24. [Cited 2019 Mar 09]. Available at: http:// doi: 10.1016/j.fgb.2016.09.002spa
dc.relation.references39. Costantini R, Ventura RI, Hernández M, Bautista S, Barrera LL. Potencial antifúngico de nanopartículas de quitosano y extracto de Arándano sobre Colletotrichum fragariae en fresa. Revista Iberoamericana de Tecnología Postcosecha [Internet]. 2018; 19 (1): 46-61.[Citado 2019 Abr 30]. Disponible en: https://www.redalyc.org/articulo.oa?id=81355612004spa
dc.relation.references40. Savi D, Rossi B, Rodrigues G, Santos L, Maba F, Glienke C, et al. Microscopic analysis of colonization of Colletotrichum abscissum in citrus tissues. Microbiol. Res. [Internet]. 2019; 226: 27-33spa
dc.relation.references41. Costantini R, Ventura RI, Hernández M, Bautista S, Barrera LL. Potencial antifúngico de nanopartículas de quitosano y extracto de Arándano sobre Colletotrichum fragariae en fresa. Revista Iberoamericana de Tecnología Postcosecha [Internet]. 2018; 19 (1): 46-61.[Citado 2019 Abr 30]. Disponible en: https://www.redalyc.org/articulo.oa?id=81355612004spa
dc.relation.references42. Weber N, Veberic R, Mikulic M, Stampar F, Koron D, Munda A, Jakopic J. Metabolite accumulation in strawberry (Fragaria ananassa Duch.) fruits and runners in response to Colletotrichum nymphaeae infection. PMPP [Internet]. 2015; 92: 119-129 [Cited 2018 oct 31]. Available at: https://doi.org/10.1016/j.pmpp.2015.10.003spa
dc.relation.references43. Curry K, Abril M, Avant, J, Smith B. Strawberry anthracnose: Histopathology of Colletotrichum acutatum and C. fragariae. J Fitopatologi. [Internet]. 2002; 92 (10): 1055-1063. [Cited 2019 Abr 30]. Available at: https://doi.org/10.1094/PHYTO.2002.92.10.1055spa
dc.relation.references44. California strawberry comission. Antracnosis en fresa [Internet]. 2017; 14 [Disponible en: https://ucanr.edu/blogs/fresamora/blogfiles/47936.pdf]spa
dc.relation.references45. Vilaplana R, Hurtado G,Valencia S. Hot water dips elicit disease resistance against anthracnose caused by Colletotrichum musae in organic bananas (Musa acuminata). [Internet]. 2018, (95) 247 - 254. [Cited 2018 oct 31]. Available at: https://doi.org/10.1016/j.lwt.2018.04.085spa
dc.relation.references46. Thistle D. The deep-sea floor: An overview. In Ecosystems of the Deep Oceans. Elsevier Science. [Internet]. 2003; (28) 6 – 8. [Cited 2019 Abr 30]. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.473.3524&rep=rep1&type=pdfspa
dc.relation.references47. Couttolenc A. Estudio químico del hongo marino endófito Curvularia trifolii nativo del Sistema Arrecifal Veracruzano. [Tesis de Doctorado en Ciencias Biomédicas]. [Internet]. Veracruz: Universidad Veracruzana. Centro de investigaciones Biomédicas ; 2015. Disponible en: https://cdigital.uv.mx/handle/123456789/42482spa
dc.relation.references48. Zhang, W, Ding, W, Li, Y.-X, Tam C, Bougouffa S, Wang R. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nat. Commun. [Internet]. 2019; 10 (1): 517. [Cited 2019 Abr 30]. Available at: https://doi.org/10.1038/s41467-019-08463-zspa
dc.relation.references49. Kossuga M, Et al. Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites. Scielo [Internet] 2011; 22(2) [Cited 2018 may 06] Available at: DOI:10.1590/S0102-695X2011005000222spa
dc.relation.references50. Invemar.Informe del estado de los ambientes y recursos marinos costeros de Colombia. [Internet]. 2017; 3. [Citado 2019 Abr 30]. Disponible en: http://www.invemar.org.co/documents/10182/14479/IER_2016_baja.pdf/4648b25a-fb94-4294-9ecb-a027abb3a2spa
dc.relation.references51. Tortorella E, Tedesco P, Esposito F, Pascale D, January G, Fani R. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives. MAR DRUGS. [Internet]. 2018; 16 (10): 355. [Cited 2019 May 24]. Available at: doi: 10.3390/md16100355.spa
dc.relation.references52. Tareq F, Lee H, Lee Y, Lee J, Shin H. Ieodoglucomide C and ieodoglycolipid, new glycolipids from a marine-derived bacterium bacillus licheniformis 09IDYM23. J Lipids. [Internet]. 2015; 50 (1): 513-519. [Cited 2019 Abr 30]. Available at: https://doi.org/10.1007/s11745-015-4014-spa
dc.relation.references53. Wu S, Liu G, Zhou S, Sha Z, Sun C. Characterization of Antifungal Lipopeptide Biosurfactants Produced By Marine Bacterium Bacillus sp. CS30. Mar Drugs. [Internet]. 2019; 17 (199): 4 - 20. [Cited 2019 Abr 30].Available at: https://doi.org/10.3390/md17040199spa
dc.relation.references54. Bhatnagar I, Kim S. Immense Essence of Excellence: Marine Microbial Bioactive Compounds. Mar Drugs. [Internet]. 2010; 8 (10): 2673-2701. [Cited 2019 Mar 16]. Available at: https://www.mdpi.com/1660-3397/8/10/2673/htmspa
dc.relation.references55. Betancur L, Forero A, Romero A, Sepúlveda L, Castellanos L, Ramos F. Cyclic tetrapeptides from the marine strain Streptomyces sp. PNM-161a with activity against rice and yam phytopathogens. J ANTIBIOT. [Internet]. 2019. [Cited 2019 Abr 30]. Available at: doi: 10.1038/s41429-019-0201-0spa
dc.relation.references56. Betancur L, Naranjo S, Vinchira D, Moreno N, CAstellanos L, Ramos F. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach. PLoS One. [Internet]. 2017. [Cited 2019 Abr 30]. Available at: DOI:10.1371/journal.pone.0170148spa
dc.relation.references57. Chalearmsrimuang T, Ismail S, Mazlan N, Suasaard S, Dethoup T. Marine-derived fungi: A promising source of halo tolerant biological control agents against plant pathogenic fungi. J PURE APPL MICROBIO. [Internet]. 2019; 113 (1): 209-223. [Cited 2019 Abr 30]. Available at: DOI : http://dx.doi.org/10.22207/JPAM.13.1.22spa
dc.relation.references58. Sheng H, Wei Y, Wang X, Xu C, Shao X. The marine yeast Sporidiobolus pararoseus ZMY-1 has antagonistic properties against Botrytis cinerea in vitro and in strawberry fruit.Postharvest Biol Technol. [Internet]. 2019; 150: 1–8. [Cited 2019 Mar 25]. Available at: https://doi.org/10.1016/j.postharvbio.2018.12.009spa
dc.relation.references59. Tang X, Yan X, Fu W, Yi L, Tang B, Yu L, Et al. New B-Lactone with The Pathogenic Fungus Inhibitory Effect from Marine-Derived Fungus 82 MCCC3A00951. J Agric Food Chem. [Internet]. 2019; 67: 10. [Cited 2019 Mar 16]. Available at: https://doi.org/10.1021/acs.jafc.9b00228spa
dc.relation.references60. Chalearn Srimuang T, Izera S, Mazlan N, Suasaard, Dethoup T. Marine-Derived Fungi: A Promising Source of Halo Tolerant Biological Control Agents against Plant Pathogenic Fungi. J Pure Appl Microbiol. [Internet]. 2019; 13: 01. [Cited 2019 Mar 16]. Available at: http://dx.doi.org/10.22207/JPAM.13.1.22spa
dc.relation.references61. Wu Z, Chen J, Zhang X, Chen Z, Li T, She Z, Et al. Four News Isocoumarins and a New Natural Tryptamine with Antifungal Activities from a Mangrove Endophytic Fungus Botryosphaeria ramosa L29. Mar Drugs. [Internet]. 2019; 17: 2. [Cited 2019 Mar 16]. Available at: https://doi.org/10.3390/md17020088spa
dc.relation.references62. Kjer J, Debbab A, Aly A, Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat. Protoc. [Internet]. 2010; 5 (3): 479 - 490. [Cited 2019 Mar 16]. Available at: doi:10.1038/nprot.2009.233spa
dc.relation.references63. Maldonado L, Stach J, Pathom W, Ward A, Bull A, Goodfellow M. Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek.J.Microbiol. [Internet]. 2005;87 (1):11 - 18. Available at: DOI: 10.1007/s10482-004-6525-0spa
dc.relation.references64. Hameş E, Uzel A. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples. J MICROBIOL METH. [Internet]. 2012; 88: 342 – 347. [Cited 2019 Mar 16]. Available at: doi:10.1016/j.mimet.2012.01.010spa
dc.relation.references65. Betancur L. Actinobacterias marinas como fuente de compuestos con actividad biológica para el control de fitopatógenos. Tesis Ph.D. Bogotá Colombia. [Internet] 2017. [Citado 2019 Mar 03]. Disponible en: http://bdigital.unal.edu.co/63733/1/LAB%20TESIS_Ver_Meritoria.pdf.spa
dc.relation.references66. Ayala M, Et al. Viability, purity, and genetic stability of entomopathogenic fungi species using different preservation methods. Fungal Biol. [Internet]. 2017; 121 (11): 920 - 928. Available at: https://doi.org/10.1016/j.funbio.2017.07.007.spa
dc.relation.references67. Linde G, Luciani A, Lopes A, Silveira J, Barros N. Long-term cryopreservation of basidiomycetes. Braz. J. Microbiol. [Internet]. 2018; 49: 220-231. [Cited 2019 Mar 03]. Available at: https://doi.org/10.1016/j.bjm.2017.08.004spa
dc.relation.references68. Duque P. Environmental Responses in Plants. Methods and Protocols. 2016. [Internet]. [Citado 2019 Abr 24]. Available at:10.1007/978-1-4939-3356-3spa
dc.relation.references69. Amal A, Mahmoud M, Sabet K, El Banna O. In vitro antagonism of cotton seedlings fungi and characterization of chitinase isozyme activities in Trichoderma harzianum. Saudi J Biol Sci. [Internet]. 2010; 17 (2):153-157. [Cited 2019 Mar 16]. Available at: doi: 10.1016/j.sjbs.2010.02.009.spa
dc.relation.references70. Diana Marcela Vinchira Villarraga. Protocolos cortos para screening de microorganismos para control biológico de fitopatógenos. Ecología microbiana 83 del suelo. Instituto de Biotecnología de Universidad Nacional. 2017. [Diapositivas]. 8 diapositivas.spa
dc.relation.references71. De la Rosa S, Martínez P, Gómez S, Corral M, Quintana P, Gómez N. Antifungal Activity of ZnO and MgO Nanomaterials and Their mixtures against Colletotrichum gloeosporioides Strains from tropical Fruit. J. Nanomater. [Internet]. 2018; 3: 1-9. [Cited 2019 May 12]. Available at: https://doi.org/10.1155/2018/3498527spa
dc.relation.references72. Kim, O. S., Cho, Y. J., Lee, K., Yoon, S. H., Kim, M., Na, H., & Won, S. (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. [Internet]. 2012; 62 (3), 716-721. [Cited 2019 Sep 29]. Available at: doi: 10.1099/ijs.0.038075-0.spa
dc.relation.references73. Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., & Tiedje, J. M. (2013). Ribosomal Database Project: data and tools for high throughput rRNA analysis Nucleic Acids Res. [Internet]. 2014; 42(1), 633-642. [Cited 2019 Sep 29]. Available at: doi: 10.1093/nar/gkt1244spa
dc.relation.references74. Reyes A, Rincón G, Martínez Z, Quiñones E, López L. Lucha entre microbios: Una herramienta para el control de enfermedades de plantas. Rdu. [Internet]. 2015; 14 (11): 2-15. [Citado 2019 Sep 29]. Disponible en: http://www.revista.unam.mx/vol.16/num11/art92/spa
dc.relation.references75. Bauer K, Puyana M, Castellanos L, Tello E. New Diterpenes Isolated from the Colombian Caribbean Soft Coral Pseudoplexaura flagellosa and their Cytotoxic Properties. Rec. Nat. Prod. [Internet]. 2019; 13 (3): 243-253. [Cited 2019 Sep 16]. Available at: http://doi.org/10.25135/rnp.100.18.07.325.1spa
dc.relation.references76. Gutiérrez M, Holguin F, Bello R, Guillén K, Dunn M, Huerta G. Production of prodigiosin and chitinases by tropical Serratia marcescens strains with potential to control plant pathogens. World J Microbiol Biotechnol. [Internet]. (2012) 28: 145-153: Available at: DOI 10.1007/s11274-011-0803-6spa
dc.relation.references77. Gutiérrez M, Dunn M, Tinoco R, Holguin F, Huerta G, Guillén K. Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marecescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP).World J Microbiol Biotechnol. [Internet]. 30(1) 33-42 2013. Available at: DOI 10.1007/s11274-013-1421-2spa
dc.relation.references78. Palacio A, Cuetara M. Infecciones por hongos invasores en imágenes. Ars Medica. [Internet]. Barcelona. 2008. [Cited 2019 Sep 16]. Disponible en: https://seq.es/wp-content/uploads/2011/02/imageneshongos.pdf.spa
dc.relation.references79. Yi R, Ling Q, Jie J, Wu F, Chen J. Fruit internal brown rot caused by Neoscytalidium dimidiatum on pitahaya in Guangdong province, China. Australas Plant Dis Notes. [Internet]. 2015; 10 (1): 10-13. Available at: DOI: 10.1007/s13314-015-0166-1spa
dc.relation.references80. Kee Y, Suhaimi N, Zakaria L, Mohd M. Characterisation of Neoscytalidium dimidiatum causing leaf blight on Sansevieria trifasciata in Malaysia. Australas Plant Dis Notes. [Internet]. 2017; 12 (1): 60. [Cited 2019 Sep 16]. Available at: DOI: 10.1007/s13314-017-0284-z.spa
dc.relation.references81. Padin C, Fernandez G, Yegres F, Yegres N. Scytalidium dimidiatum: hongo oportunista para el hombre y árboles de Mangifera indica en Venezuela. REV IBEROAM MICOL. [Internet]. 2005; 22 (3): 172-173. [Cited 2019 Sep 16]. Disponible en: https://doi.org/10.1016/S1130-1406(05)70035-8spa
dc.relation.references82. Sánchez K, Blanco-M, Castro O. Etiología del cáncer del tallo provocado por Neoscytalidium dimidiatum (Penz) en Hylocereus costaricensis, en Costa Rica. Agron. Costarricense. [Internet]. 2019; 43 (1): [Citado 2019 Sep 16]. Disponible en: http://dx.doi.org/10.15517/rac.v43i1.35646spa
dc.relation.references83. Mishra R, Barik R, Arif M, Malempati A. Right atrial fungal endocarditis with bilateral extensive pulmonary infiltration caused by Neoscytalidium dimidiatum in an immunocompetent child: first case report from India. Indian J Thorac Cardiovasc Surg. [Internet]. 2016; 32 (1): 23-26. [Cited 2019 Sep 16]. Available at: https://doi.org/10.1007/s12055-015-0405-2spa
dc.relation.references84. Madrid H, Ruíz M, Cano J, Stchigel A, Orofino R, Guarro J. Genotyping and in vitro antifungal susceptibility of Neoscytalidium dimidiatum isolates from different origins. Int J Antimicrob Agents. [Internet]. 2009;34 (4):351-354. [Cited 2019 Sep 16]. Available at: doi: 10.1016/j.ijantimicag.2009.05.006.spa
dc.relation.references85. Backer M, Raponi M, Arndt G. RNA-mediated gene silencing in non-pathogenic and pathogenic fungi. CURR OPIN MICROBIOL. [Internet]. 2003; 5 (2). 323-329. [Cited 2019 Sep 16]. Available at: https://doi.org/10.1016/S1369-5274(02)00319-3spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembPlagas - Control biológico
dc.subject.lembBiología de suelos
dc.subject.lembcontrol biológico de fitopatógenos
dc.subject.proposalBiocontroladorspa
dc.subject.proposalMicroorganismos marinosspa
dc.subject.proposalFragaria spspa
dc.subject.proposalAntracnosisspa
dc.subject.proposalColletotrichum sppspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2spa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados -Universidad Colegio Myor de Cundinamarca ,2019