Mostrar el registro sencillo del ítem

dc.contributor.advisorEstupiñán Torres, Sandra Mónica
dc.contributor.advisorRivera Monroy, Zuly Jenny
dc.contributor.advisorPineda Castañeda, Héctor Manuel
dc.contributor.authorDíaz Rodríguez, Karen Tatiana
dc.date.accessioned2022-09-19T14:04:40Z
dc.date.available2022-09-19T14:04:40Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/5671
dc.description.abstractEn la última década, se ha trabajado en el hallazgo de nuevas moléculas peptídicas con actividad antibacteriana frente a microorganismos de importancia clínica actual, como lo son aquellos del grupo ESKAPE (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa y Enterococcus spp.), causantes de enfermedades como la gastroenteritis, neumonía, endocarditis, infecciones intrahospitalarias e infecciones cutáneas. En esta revisión, se discute sobre los antecedentes, características y mecanismos de acción propuestos para los PAMs, por medio de una recopilación de diferentes artículos experimentales enfocados principalmente a las técnicas que han permitido la elucidación del mecanismo de acción, entre ellas se encuentran técnicas y ensayos como la microscopía de fluorescencia, microscopía electrónica, microscopía de fuerza atómica, ensayos moleculares e inmunoenzimáticos, entre otros. Estos ensayos han permitido avanzar en la comprensión e interpretación de la interacción de PAMs con los microorganismos lo que ayuda a diseñar mejoras en la estructura de los PAMs que puedan potenciar su actividad antibacteriana.spa
dc.description.tableofcontentsTABLA DE CONTENIDO Introducción 12 1. Antecedentes 15 2. Marco teórico 18 2.1 Diversidad de los PAMs 18 2.2 Características fisicoquímicas de los PAMs 19 2.2.1 Estructura 19 2.2.2 Relación estructura-actividad 21 2.3 PAMs en la clínica 23 2.4 Mecanismo de acción de los PAMs 28 2.4.1 Mecanismo membranolítico de los PAMs 29 2.4.2 Mecanismo no membranolítico de los PAMs 31 3. Diseño metodológico 32 3.1 Tipo de investigación 33 3.2 Universo, población y muestra 34 3.2.1 Universo 34 3.2.2 Población 34 3.2.3 Muestra 34 3.3 Criterios de inclusión 34 3.4 Criterios de exclusión 34 3.5 Pregunta de investigación 35 4. Metodología 35 4.1 Revisión bibliográfica 35 5. Resultados y discusión 35 5.1 Revisión bibliográfica 35 5.2 Metodologías usadas en la determinación de mecanismos de acción 37 5.2.1 Metodologías asociadas a membrana 37 5.2.1.1 Dinámica molecular (DM) 38 5.2.1.2 Espectroscopía de resonancia magnética nuclear (RMN) 39 5.2.1.3 Microscopía de fuerza atómica (AFM) 41 7 5.2.1.4 Microscopía confocal láser de barrido (CLSM) 43 5.2.1.5 Microscopía electrónica de transmisión (MET) 45 5.2.1.6 Microscopía electrónica de barrido (MEB) 47 5.2.1.7 Microscopía de fluorescencia 49 5.2.1.8 Citometría de flujo 51 5.2.1.9 Tinción y liberación de colorantes 54 5.2.2 Metodologías asociadas a pared celular 56 5.2.3 Metodologías asociadas a blancos intracelulares 59 5.2.3.1 Inhibición de la replicación 60 5.2.3.1.1 Ensayo de desoxinucleotidil transferasa terminal (TUNEL) 60 5.2.3.1.2 Ensayo de retardo en gel 61 5.2.3.2 Inhibición de síntesis de proteínas 63 6. Conclusiones 65 7. Referencias 67 ANEXOS 75 Anexo 1. Diagrama de flujo de las metodologías a utilizar en la identificación del mecanismo de acción de péptidos con actividad antibacteriana. 75 Anexo 1.1. Metodologías utilizadas en la identificación de mecanismos de acción membranolíticos. 76 Anexo 1.2. Metodologías utilizadas en la identificación de mecanismos de acción sobre la pared bacteriana. 77 Anexo 1.3. Metodologías utilizadas en la identificación de mecanismos de acción intracelulares. 78 Anexo 2. Esquema de las metodologías utilizadas para la evaluación del mecanismo de acción en cada uno de los blancos bacterianos. 79eng
dc.format.extent79p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleDeterminación de mecanismos de acción de péptidos frente a bacterias: revisión del estado del arte de las metodologías empleadasspa
dc.typeTrabajo de grado - Pregradospa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotáspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesPark CB, Kim MS, Kim SC. A novel antimicrobial peptide from Bufo bufo gargarizans. Biochem Biophys Res Commun. 1996;218(1):408–13.spa
dc.relation.referencesJ.Dubos I. Studies on a bactericidal agent extracted from a soil bacillus isolation of a sporulating bacillus capable of lyzing the living cells of gram-positive microorganisms. --the method employed for the discovery. J Exp Med. 1939;70(1):1–10.spa
dc.relation.referencesMice IIN. STUDIES ON A BACTERICIDAL A G E N T E X T R A C T E D FROM A SOIL BACILLUS EXPERIMENTAL PI ~ EU ~ OCOCCUS INFECTIONS IN MICE Downloaded from jem . rupress . org on March 18 , 2015 In the preceding paper a description was given of the preparation and prope. 1939;(Table I):11– 7.spa
dc.relation.referencesTopps J., Elliott RC. © 1965 Nature Publishing Group. Nat Publ Gr. 1965;205(5007):498–9.spa
dc.relation.referencesSelsted ME, Brown DM, DeLange RJ, Harwig SS, Lehrer RI. Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem. 1985;260(8):4579–84.spa
dc.relation.referencesSelsted ME, Brown DM, DeLange RJ, Lehrer RI. Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem. 1983;258(23):14485–9.spa
dc.relation.referencesGanz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, et al. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985;76(4):1427–35.spa
dc.relation.referencesPark CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun. 1998;244(1):253–7.spa
dc.relation.referencesLiu Y, Han F, Xie Y, Wang Y. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. 2011;1069–78spa
dc.relation.referencesTorcato IM, Huang YH, Franquelim HG, Gaspar D, Craik DJ, Castanho MARB, et al. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochim Biophys Acta - Biomembr. 2013;1828(3):944–55.spa
dc.relation.referencesSchneider VAF, Coorens M, Bokhoven JLMT, Posthuma G, Dijk A van, Veldhuizen EJA, et al. Imaging the Antistaphylococcal Activity of CATH-2: Mechanism of Attack and Regulation of Inflammatory Response. mSphere. 2017 Dec;2(6).spa
dc.relation.referencesYan J, Wang K, Dang W, Chen R, Xie J, Zhang B, et al. Two Hits Are Better than One: Membrane-Active and DNA Binding-Related Double-Action Mechanism of NK-18, a Novel Antimicrobial Peptide Derived from Mammalian NK-Lysin. Antimicrob Agents Chemother. 2013 Jan;57(1):220.spa
dc.relation.referencesFleming A, B PRSL. On a remarkable bacteriolytic element found in tissues and secretions. Proc R Soc London Ser B, Contain Pap a Biol Character. 1922;93(653):306–17.spa
dc.relation.referencesGause GF, Brazhnikova MG. Gramicidin S and its use in the treatment of infected wounds [3]. Vol. 154, Nature. 1944. p. 703.spa
dc.relation.referencesVan Epps HL. René Dubos: unearthing antibiotics. J Exp Med. 2006 Feb;203(2):259.spa
dc.relation.referencesHIRSCH JG. Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. J Exp Med. 1956;103(5):589–611.spa
dc.relation.referencesZeya HI, Spitznagel JK. Cationic proteins of polymorphonuclear leukocyte lysosomes. II. Composition, properties, and mechanism of antibacterial action. J Bacteriol. 1966;91(2):755–62.spa
dc.relation.referencesHultmark D, Steiner H, Rasmuson T, Boman HG. from Hemolymph of Immunized Pupae of Hyalophora cecropia. Eur J Biochem. 1980;16:7–16.spa
dc.relation.referencesMaloy WL, Kari UP. Structure–activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–22.spa
dc.relation.referencesHancock REW, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A. 2000;97(16):8856–61.spa
dc.relation.referencesSimmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: What do they tell us? Biopolymers. 1998;47(6):435–50spa
dc.relation.referencesPhoenix DA, Dennison SR, Harris F. Antimicrobial Peptides: Their History, Evolution, and Functional Promiscuity. Antimicrob Pept. 2013;1–37.spa
dc.relation.referencesH. Steiner, D. Hultmark, A. Engstom, H. Bennich HGB. Cecropin.pdf. 1981. p. 5820.spa
dc.relation.referencesZasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987;84(15):5449–53.spa
dc.relation.referencesBrogden KA, Ackermann M, Huttner KM. Small, anionic, and chargeneutralizing propeptide fragments of zymogens are antimicrobial. Antimicrob Agents Chemother. 1997;41(7):1615–7.spa
dc.relation.referencesSmeaton JR, Elliott WH. Isolation and properties of a specific bacterial ribonuclease inhibitor. BBA Sect Nucleic Acids Protein Synth. 1967;145(3):547– 60.spa
dc.relation.referencesSmeaton JR, Elliott WH. Isolation and properties of a specific bacterial ribonuclease inhibitor. BBA Sect Nucleic Acids Protein Synth. 1967;145(3):547– 60.spa
dc.relation.referencesSmeaton JR, Elliott WH. Isolation and properties of a specific bacterial ribonuclease inhibitor. BBA Sect Nucleic Acids Protein Synth. 1967;145(3):547– 60.spa
dc.relation.referencesTytler EM, Anantharamaiah GM, Walker DE, Mishra VK, Palgunachari MN, Segrest JP. Molecular Basis for Prokaryotic Specificity of Magainin-Induced Lysis. Biochemistry. 1995;34(13):4393–401spa
dc.relation.referencesSteiner H, Andreu D, Merrifield RB. Binding and action of cecropin and cecropin analogues: Antibacterial peptides from insects. BBA - Biomembr. 1988;939(2):260–6.spa
dc.relation.referencesMatsuzaki K, Sugishita KI, Harada M, Fujii N, Miyajima K. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gramnegative bacteria. Biochim Biophys Acta - Biomembr. 1997 Jul;1327(1):119–30.spa
dc.relation.referencesHasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, et al. An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science (80- ). 2006;313(5793):1636–7.spa
dc.relation.referencesLi A, Lee PY, Ho B, Ding JL, Lim CT. Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria. Biochim Biophys Acta - Biomembr. 2007;1768(3):411–8spa
dc.relation.referencesAbee T. Pore-Forming Bacteriocins of Gam+ and Self Protection.Pdf. 1995;129:1– 9.spa
dc.relation.referencesMitchell W, Ng EA, Tamucci JD, Boyd KJ, Sathappa M, Coscia A, et al. The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action. J Biol Chem. 2020 May;295(21):7452.spa
dc.relation.referencesStepek IA, Cao T, Koetemann A, Shimura S, Wollscheid B, Bode JW. Antibiotic Discovery with Synthetic Fermentation: Library Assembly, Phenotypic Screening, and Mechanism of Action of β-Peptides Targeting Penicillin-Binding Proteins. ACS Chem Biol. 2019;14(5):1030–40spa
dc.relation.referencesSchneider VAF, Coorens M, Ordonez SR, Tjeerdsma-Van Bokhoven JLM, Posthuma G, Van Dijk A, et al. Imaging the antimicrobial mechanism(s) of cathelicidin-2. Sci Rep. 2016 Sep;6.spa
dc.relation.referencesKumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018;8(1).spa
dc.relation.referencesBrowne K, Chakraborty S, Chen R, Willcox MDP, Black DS, Walsh WR, et al. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int J Mol Sci. 2020 Oct;21(19):1–23.spa
dc.relation.referencesAhmed TAE, Hammami R. Recent insights into structure–function relationships of antimicrobial peptides. J Food Biochem. 2019;43(1):1–8.spa
dc.relation.referencesLee T-H, N. Hall K, Aguilar M-I. Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure. Curr Top Med Chem. 2015;16(1):25–39.spa
dc.relation.referencesTuerkova A, Kabelka I, Králová T, Sukeník L, Pokorná Š, Hof M, et al. Effect of helical kink in antimicrobial peptides on membrane pore formation. Elife. 2020 Mar;9spa
dc.relation.referencesVega Chaparro SC, Valencia Salguero JT, Martínez Baquero DA, Rosas Pérez JE. Effect of Polyvalence on the Antibacterial Activity of a Synthetic Peptide Derived from Bovine Lactoferricin against Healthcare-Associated Infectious Pathogens. Biomed Res Int. 2018;2018spa
dc.relation.referencesLipkin R, Pino-Angeles A, Lazaridis T. Transmembrane Pore Structures of β-hairpin Antimicrobial Peptides by All-Atom Simulations. J Phys Chem B. 2017 Oct;121(39):9126spa
dc.relation.referencesMahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol. 2016;6:1– 12.spa
dc.relation.referencesCárdenas-Martínez KJ, Grueso-Mariaca D, Vargas-Casanova Y, BonillaVelásquez L, Estupiñán SM, Parra-Giraldo CM, et al. Effects of Substituting Arginine by Lysine in Bovine Lactoferricin Derived Peptides: Pursuing Production Lower Costs, Lower Hemolysis, and Sustained Antimicrobial Activity. Int J Pept Res Ther [Internet]. 2021;27(3):1751–62. Available from: https://doi.org/10.1007/s10989-021-10207-xspa
dc.relation.referencesDathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett. 2001 Jul;501(2–3):146–50spa
dc.relation.referencesHall K, Lee TH, Aguilar MI. The role of electrostatic interactions in the membrane binding of melittin. J Mol Recognit. 2011;24(1):108–18.spa
dc.relation.referencesChen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS. Role of Peptide Hydrophobicity in the Mechanism of Action of α-Helical Antimicrobial Peptides. Antimicrob Agents Chemother. 2007 Apr;51(4):1398.spa
dc.relation.referencesBrogden KA, De Lucca AJ, Bland J, Elliott S. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc Natl Acad Sci U S A. 1996;93(1):412–6.spa
dc.relation.referencesBrogden KA, Ackermann M, Huttner KM. Detection of Anionic Antimicrobial Peptides in Ovine Bronchoalveolar Lavage Fluid and Respiratory Epithelium. Infect Immun. 1998;66(12):5948.spa
dc.relation.referencesHuertas Méndez NDJ, Vargas Casanova Y, Gómez Chimbi AK, Hernández E, Leal Castro AL, Melo Diaz JM, et al. Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076. Molecules. 2017;22(3):1–10spa
dc.relation.referencesHuertas N de J, Monroy ZJR, Medina RF, Castañeda JEG. Antimicrobial Activity of Truncated and Polyvalent Peptides Derived from the FKCRRQWQWRMKKGLA Sequence against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923. Molecules. 2017;22(6).spa
dc.relation.referencesMejía E, Benítez J, Ortiz M. Péptidos antimicrobianos, una alternativa para el combate de la resistencia bacteriana/Antimicrobial peptides, an alternative to combat bacterial resistance. Acta Biológica Colomb. 2020;2(2):294–302.spa
dc.relation.referencesVargas-Casanova Y, Rodríguez-Mayor AV, Cardenas KJ, Leal-Castro AL, Muñoz-Molina LC, Fierro-Medina R, et al. Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains. RSC Adv. 2019 Mar;9(13):7239–45.spa
dc.relation.referencesShai Y. Mode of action of membrane active antimicrobial peptides. Biopolym -Pept Sci Sect. 2002;66(4):236–48spa
dc.relation.referencesHilchie AL, Wuerth K, Hancock REW. Immune modulation by multifaceted cationic host defense (antimicrobial) peptides. Nat Chem Biol. 2013;9(12):761–8.spa
dc.relation.referencesHancock REW, Nijnik A, Philpott DJ. Modulating immunity as a therapy for bacterial infections. Nat Rev Microbiol. 2012;10(4):243–54spa
dc.relation.referencesRivas-Santiago B, Castañeda-Delgado JE, Rivas Santiago CE, Waldbrook M, González-Curiel I, León-Contreras JC, et al. Ability of Innate Defence Regulator Peptides IDR-1002, IDR-HH2 and IDR-1018 to Protect against Mycobacterium tuberculosis Infections in Animal Models. PLoS One. 2013 Mar;8(3).spa
dc.relation.referencesTewary P, de la Rosa G, Sharma N, Rodriguez LG, Tarasov SG, Howard OMZ, et al. BETA DEFENSIN 2 AND 3 PROMOTE THE UPTAKE OF SELF OR CpG DNA, ENHANCE IFN-α PRODUCTION BY HUMAN PLASMACYTOID DENDRITIC CELLS AND PROMOTE INFLAMMATION. J Immunol. 2013 Jul;191(2):865.spa
dc.relation.referencesBechinger B, Gorr SU. Antimicrobial Peptides: Mechanisms of Action and Resistance. J Dent Res. 2017 Mar;96(3):254spa
dc.relation.referencesCárdenas Espinosa LP. Dinámica molecular como técnica de simulación. Rev Habitus Semilleros Investig. 2009;(1):29–32.spa
dc.relation.referencesMihajlovic M, Lazaridis T. Antimicrobial Peptides in Toroidal and Cylindrical Pores. Biochim Biophys Acta. 2010 Aug;1798(8):1485.spa
dc.relation.referencesLipkin RB, Lazaridis T. Implicit Membrane Investigation of the Stability of Antimicrobial Peptide β-barrels and arcs. J Membr Biol. 2015 Nov;248(3):469spa
dc.relation.referencesLorenzón EN, Riske KA, Troiano GF, Da Hora GCA, Soares TA, Cilli EM. Effect of dimerization on the mechanism of action of aurein 1.2. Biochim Biophys Acta - Biomembr. 2016 Jun;1858(6):1129–38.spa
dc.relation.referencesDepartamento de Química Física U de V. Espectroscopia de resonancia magnética nuclear. Fundam Química Orgánica. 2011;193–207spa
dc.relation.referencesLazaridis T, He Y, Prieto L. Membrane Interactions and Pore Formation by the Antimicrobial Peptide Protegrin. Biophys J. 2013 Feb;104(3):633spa
dc.relation.referencesRaheem N, Kumar P, Lee E, Cheng JTJ, Hancock REW, Straus SK. Insights into the mechanism of action of two analogues of aurein 2.2. Biochim Biophys Acta - Biomembr. 2020 Jun;1862(6):183262spa
dc.relation.referencesPandit G, Ilyas H, Ghosh S, Bidkar AP, Mohid SA, Bhunia A, et al. Insights into the Mechanism of Antimicrobial Activity of Seven-Residue Peptides. J Med Chem. 2018;61(17):7614–29.spa
dc.relation.referencesLaadhari M, Arnold AA, Gravel AE, Separovic F, Marcotte I. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by 2H solidstate NMR. Biochim Biophys Acta - Biomembr. 2016 Dec;1858(12):2959–64.spa
dc.relation.referencesGonzáles MCR, Castellon-Uribe J. Microscopio de Fuerza Atómica. Eninvie. 2005;6.spa
dc.relation.referencesMajewska M, Zamlynny V, Pieta IS, Nowakowski R, Pieta P. Interaction of LL37 human cathelicidin peptide with a model microbial-like lipid membrane. Bioelectrochemistry. 2021 Oct;141:107842.spa
dc.relation.referencesKim SY, Pittman AE, Zapata-Mercado E, King GM, Wimley WC, Hristova K. Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid Bilayers. J Am Chem Soc. 2019;141(16):6706–18spa
dc.relation.referencesMescola A, Ragazzini G, Alessandrini A. Daptomycin Strongly Affects the Phase Behavior of Model Lipid Bilayers. J Phys Chem B. 2020;124(39):8562–71.spa
dc.relation.referencesMalanovic N, Lohner K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals. 2016 Sep;9(3)spa
dc.relation.referencesMicroscopio Confocal de Barrido Láser - CONICET Rosariospa
dc.relation.referencesJang SA, Kim H, Lee JY, Shin JR, Kim DJ, Cho JH, et al. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides [Internet]. 2012;34(2):283–9. Available from: http://dx.doi.org/10.1016/j.peptides.2012.01.015spa
dc.relation.referencesXi D, Wang X, Teng D, Mao R, Zhang Y, Wang X, et al. Mechanism of action of the tri-hybrid antimicrobial peptide LHP7 from lactoferricin, HP and plectasin on Staphylococcus aureus. BioMetals. 2014;27(5):957–68.spa
dc.relation.references¿Qué es el Microscopio Electrónico de Transmisión?spa
dc.relation.referencesRaschig J, Mailänder-Sánchez D, Berscheid A, Berger J, Strömstedt AA, Courth LF, et al. Ubiquitously expressed Human Beta Defensin 1 (hBD1) forms bacteriaentrapping nets in a redox dependent mode of action. PLoS Pathog. 2017 Mar;13(3).spa
dc.relation.referencesIpohorski M, Bozzano PB. Microscopía electrónica de barrido en la caracterización de materiales. Cienc Invest. 2013;63(3):43–53.spa
dc.relation.referencesMicroscopía electrónica de barrido de emisión de campo : Servicio de Microscopía Electrónica : UPV.spa
dc.relation.referencesMicroscopía Electrónica de Barrido (SEM/FESEM) - Universidad de Almería.spa
dc.relation.referencesHong J, Guan W, Jin G, Zhao H, Jiang X, Dai J. Mechanism of tachyplesin I injury to bacterial membranes and intracellular enzymes, determined by laser confocal scanning microscopy and flow cytometry. Microbiol Res. 2015 Jan;170:69–77spa
dc.relation.referencesHuang Y, He L, Li G, Zhai N, Jiang H, Chen Y. Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell. 2014 Aug;5(8):631.spa
dc.relation.referencesAsí funciona un microscopio de fluorescencia - Cromtekspa
dc.relation.referencesMemariani H, Shahbazzadeh D, Sabatier JM, Memariani M, Karbalaeimahdi A, Bagheri KP. Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa. Biochem Biophys Res Commun. 2016;479(1):103–8spa
dc.relation.referencesYang S, Dong Y, Aweya JJ, Xie T, Zeng B, Zhang Y, et al. Antimicrobial activity and acting mechanism of Tegillarca granosa hemoglobin-derived peptide (TGH1) against Vibrio parahaemolyticus. Microb Pathog. 2020;147:104302spa
dc.relation.referencesSingh S, Nimmagadda A, Su M, Wang M, Teng P, Cai J. Lipidated α/α-AA heterogeneous peptides as antimicrobial agents. Eur J Med Chem. 2018 Jul;155:398spa
dc.relation.referencesWang K, Yan J, Dang W, Liu X, Chen R, Zhang J, et al. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista. Peptides. 2013;39(1):80–8.spa
dc.relation.referencesXie J, Gou Y, Zhao Q, Wang K, Yang X, Yan J, et al. Antimicrobial activities and membrane-active mechanism of CPF-C1 against multidrug-resistant bacteria, a novel antimicrobial peptide derived from skin secretions of the tetraploid frog Xenopus clivii. J Pept Sci. 2014;20(11):876–84spa
dc.relation.referencesXie J, Gou Y, Zhao Q, Li S, Zhang W, Song J, et al. Antimicrobial activities and action mechanism studies of transportan 10 and its analogues against multidrug-resistant bacteria. J Pept Sci. 2015;21(7):599–607.spa
dc.relation.referencesCITOMETRÍA DE FLUJO: VÍNCULO ENTRE LA INVESTIGACIÓN BÁSICA Y LA APLICACIÓN CLÍNICA.spa
dc.relation.referencesJocelyn Carolina P-L, Wendolaine S-C, Héctor R-R, Carlos J. Portafolio Científico. 18(2):julio-diciembrespa
dc.relation.referencesYasir M, Dutta D, Willcox MDP. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One. 2019 Jul;14(7).spa
dc.relation.referencesAkbari R, Hakemi Vala M, Hashemi A, Aghazadeh H, Sabatier JM, Pooshang Bagheri K. Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria. Amino Acids. 2018;50(9):1231–43.spa
dc.relation.referencesMadanchi H, Ebrahimi Kiasari R, Seyed Mousavi SJ, Johari B, Shabani AA, Sardari S. Design and Synthesis of Lipopolysaccharide-Binding Antimicrobial Peptides Based on Truncated Rabbit and Human CAP18 Peptides and Evaluation of Their Action Mechanism. Probiotics Antimicrob Proteins. 2020;12(4):1582–93.spa
dc.relation.referencesLee B, Hwang JS, Lee DG. Antibacterial action of lactoferricin B like peptide against Escherichia coli: reactive oxygen species-induced apoptosis-like death. J Appl Microbiol. 2020;129(2):287–95.spa
dc.relation.referencesSun C, Li Y, Cao S, Wang H, Jiang C, Pang S, et al. Antibacterial activity and mechanism of action of bovine lactoferricin derivatives with symmetrical amino acid sequences. Int J Mol Sci. 2018;19(10):1–20.spa
dc.relation.referencesChen X, Hirt H, Li Y, Gorr SU, Aparicio C. Antimicrobial GL13K Peptide Coatings Killed and Ruptured the Wall of Streptococcus gordonii and Prevented Formation and Growth of Biofilms. PLoS One. 2014 Nov;9(11)spa
dc.relation.referencesZhanel GG, Schweizer F, Karlowsky JA. Oritavancin: Mechanism of Action. Clin Infect Dis. 2012 Apr;54(suppl_3):S214–9spa
dc.relation.referencesMalanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim Biophys Acta - Biomembr. 2016 May;1858(5):936–46spa
dc.relation.referencesLehotzkya RE, Partchb CL, Mukherjeea S, Casha HL, Goldman WE, Gardner KH, et al. Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc Natl Acad Sci U S A. 2010 Apr;107(17):7722–7spa
dc.relation.referencesFlorez Ariza A, Guerra Giraldez D. Crío-miCrosCopía eleCtróniCa. resolviendo la estruCtura moleCular de la vida al detalle atómiCo Cryo-electron microscopy. Solving the molecular structure of life at the atomic detailspa
dc.relation.referencesMularski A, Wilksch JJ, Hanssen E, Strugnell RA, Separovic F. Atomic force microscopy of bacteria reveals the mechanobiology of pore forming peptide action. Biochim Biophys Acta - Biomembr. 2016 Jun;1858(6):1091–8spa
dc.relation.referencesDeCS.spa
dc.relation.referencesJuliano SA, Serafim LF, Duay SS, Heredia Chavez M, Sharma G, Rooney M, et al. A Potent Host Defense Peptide Triggers DNA Damage and Is Active against Multidrug-Resistant Gram-Negative Pathogens. ACS Infect Dis. 2020;6(5):1250– 63spa
dc.relation.referencesGarner MM, Revzin A. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 1981 Jul;9(13):3047–60.spa
dc.relation.referencesBattista F, Oliva R, Vecchio P Del, Winter R, Petraccone L. Insights into the Action Mechanism of the Antimicrobial Peptide Lasioglossin III. Int J Mol Sci 2021, Vol 22, Page 2857. 2021 Mar;22(6):2857.spa
dc.relation.referencesHan X, Kou Z, Jiang F, Sun X, Shang D. Interactions of designed trp-containing antimicrobial peptides with dna of multidrug-resistant-pseudomonas aeruginosa. DNA Cell Biol. 2021;40(2):414–24spa
dc.relation.referencesZhong L, Liu J, Teng S, Xie Z. Identification of a Novel Cathelicidin from the Deinagkistrodon acutus Genome with Antibacterial Activity by Multiple Mechanisms. Toxins (Basel). 2020 Dec;12(12).spa
dc.relation.referencesHao G, Shi YH, Tang YL, Le GW. The intracellular mechanism of action on Escherichia coli of BF2-A/C, two analogues of the antimicrobial peptide Buforin 2. J Microbiol. 2013;51(2):200–6spa
dc.relation.referencesHo YH, Shah P, Chen YW, Chen CS. Systematic Analysis of Intracellulartargeting Antimicrobial Peptides, Bactenecin 7, Hybrid of Pleurocidin and Dermaseptin, Proline–Arginine-rich Peptide, and Lactoferricin B, by Using Escherichia coli Proteome Microarrays. Mol Cell Proteomics. 2016 Jun;15(6):1837spa
dc.relation.referencesSola R, Mardirossian M, Beckert B, De Luna LS, Prickett D, Tossi A, et al. Characterization of Cetacean Proline-Rich Antimicrobial Peptides Displaying Activity against ESKAPE Pathogens. Int J Mol Sci 2020, Vol 21, Page 7367. 2020 Oct;21(19):7367.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembextracelular
dc.subject.lembintracelular
dc.subject.lembantibacteriano
dc.subject.proposalPAMsspa
dc.subject.proposalmecanismo de acciónspa
dc.subject.proposalin-vivospa
dc.subject.proposalin-vitrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022