Mostrar el registro sencillo del ítem

dc.contributor.advisorRomero Calderón, Ibeth Cristina
dc.contributor.advisorSánchez Mora, Ruth Mélida
dc.contributor.authorMendieta Alarcón, Laura Stephanie
dc.contributor.authorNavarro Guevara, Laura Marcela
dc.date.accessioned2022-10-18T16:55:00Z
dc.date.available2022-10-18T16:55:00Z
dc.date.issued2022-04-01
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/5716
dc.description.abstractLas infecciones nosocomiales generadas por Pseudomonas aeruginosa se han convertido en una problemática de importancia en salud pública, debido a la alta tasa de morbilidad y mortalidad alrededor del mundo, como consecuencia del aumento de resistencia a antibióticos, a tal punto de bajar la efectividad de los fármacos más fuertes. A partir de lo anterior, surge la necesidad de la búsqueda de nuevas terapias, por lo que es vital el estudio de nuevos blancos terapéuticos para tratar esta bacteria. Es por ello que en el presente estudio se realizó la caracterización in silico de tres genes (EmrA, ArnA y MarR) relacionados a la resistencia para determinar si podrían ser de utilidad en la implementación de nuevos tratamientos. Se realizó el alineamiento múltiple de nucleótidos y aminoácidos de las cepas MDR 03 y 04, junto con la cepa de referencia y los ortólogos encontrados, donde se observaron mutaciones, las cuales pueden estar relacionadas a la resistencia de los aislados clínicos colombianos. Así mismo, se predijo la estructura terciaria de las proteínas de estudio por medio de la herramienta bioinformática I-TASSER, los modelos seleccionados presentan puntajes TM y C-score dentro de los parámetros, que permiten evidenciar la confiabilidad de ésta para el presente estudio y los que se puedan derivar de éste. De igual manera, los resultados obtenidos, podrían ser empleados en otros estudios para evaluar inhibidores específicos para dichas proteínas.spa
dc.description.abstractNosocomial infections caused by Pseudomonas aeruginosa have become an important problem in public health, due to high rates of morbidity and mortality worldwide, as a consequence of the increase in antibiotic resistance, until the point to reduce the most potent drug effectiveness. Based on the above, the need to search for new therapies arises, for that, it is vital the study of new therapeutic targets to treat this bacterium. For this reason, the present study of the characterization in silico of three genes (EmrA, ArnA and MarR) was made to determine if they could be used in the implementation of new treatments. The nucleotides and amino acids multiple alignments of MDR 03 and MDR 04 strains were made, together with reference strain and orthologues found, where mutations were observed, which may be related to Colombian clinical isolates resistance, however, future studies are needed to corroborate this. Likewise, tertiary structure protein was predicted by bioinformatic tool I-TASSER, the selected models have TM and C scores within the parameters, which provide evidence of reliability of that for the present study and what can be generated based on this one. Similarly, the obtained results might be used in other studies to test specific inhibitors for these proteins.eng
dc.description.tableofcontentsTabla de contenido Resumen 10 Introducción 13 Objetivos 15 Objetivo general 15 Objetivos específicos 15 1.Antecedentes 16 2. Marco referencial 21 2. 1 Generalidades de Pseudomonas aeruginosa 21 2. 1. 1 Características morfológicas, bioquímicas y microbiológicas. 22 2. 2 Infecciones causadas por Pseudomonas aeruginosa 22 2. 4 Generalidades de factores de virulencia de Pseudomonas aeruginosa 23 2. 5 Resistencia a fármacos 24 2.5.1 Mecanismos de resistencia intrínseca 25 2.5.2 Mecanismos de resistencia extrínseca 26 2. 6 Principal función de los genes de resistencia emrA, arnA y marR 27 3. Diseño metodológico 28 3.1 Tipo de Investigación 28 3.2 Enfoque de la investigación 28 3.3 Población y muestra 28 3.4 Técnicas y procedimientos 29 3.4.1 Identificación de los genes emrA, arnA y marR a partir de los genomas de dos cepas de P. aeruginosa MDR 29 3.4.2 Comparación de secuencias de los genes emrA, arnA y marR para determinar mutaciones puntuales asociadas a resistencia 29 3.4.3 Análisis filogenético de los genes emrA, arnA y marR y sus ortólogos en otras especies 30 3.4.4 Análisis de las secuencias de proteínas codificadas por los genes emrA, arnA y marR 30 6 3.4.5 Predicción de estructura secundaria y terciaria de las proteínas 31 4. Resultados 31 4.1 Identificación de los genes emrA, arnA y marR a partir de los genomas de dos cepas de P. aeruginosa MDR. 31 4.2 Comparación de secuencias de los genes emrA, arnA y marR para determinar mutaciones puntuales asociadas a resistencia. 32 4.2.1. Mutaciones en la secuencia del gen emrA 32 4.2.2 Mutaciones en la secuencia del gen ArnA 35 4.2.3 Mutaciones en la secuencia del gen MarR 39 4.2.4 Comparación de secuencias ortólogas del gen emrA, arnA y marR 40 4.2.4.1 Alineamiento múltiple de secuencias ortólogas del gen emrA 40 4.2.4.2 Alineamiento múltiple secuencias ortólogas gen arnA 41 4.2.4.3 Alineamiento múltiple secuencias ortólogas gen MarR 41 4.3 Análisis filogenético de los genes EmrA, ArnA y MarR 41 4.4 Análisis de secuencias de proteínas codificadas por los genes emrA, arnA y marR 43 4.4.1 Predicción de los marcos abierto de lectura y secuencias aminoacídicas de las proteínas codificadas por los genes emrA, arnA y marR 43 4.4.1 Alineamiento múltiple de secuencias de aminoácidos codificados por los genes de interés 44 4.4.1.1 Alineamiento múltiple de secuencia de aminoacidos codificado por el gen emrA 44 4.4.1.2 Alineamiento multiple de secuencias de aminoacidos codificado por el gen arnA44 4.4.1.3 Alineamiento múltiple de secuencias de aminoácidos codificadas por el gen marR 46 4.5. Predicción de las estructuras secundaria y terciaria de las proteínas EmrA, ArnA y MarR de P. aeruginosa MDR 03 y 04 46 5. Discusión 50 6. Conclusiones 53 Referencias Bibliográficas 54 Anexos 66spa
dc.format.extent79p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleCaracterización in silico de los genes emrA, arnA y marR involucrados en resistencia a medicamentos en cepas de Pseudomonas aeruginosa con fenotipo multidrogorresistente (MDR)spa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotáspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesMohammadi H, Bakhshi B, Daraei B, Fazeli H, Nasr B. Global Sequence Analysis and Expression of Azurin Gene in Different Clinical Specimens of Burn Patients with Pseudomonas aeruginosa Infection. Infect Drug Resist [online]. 2020 Jul 13; 13: 2261- 2275. [Consulted 2020 Dec 16]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367926/spa
dc.relation.referencesLa OMS publica la lista de las bacterias para las que se necesitan urgentemente nuevos antibióticos [internet]. Ginebra: Organización mundial de la salud; 2017 Feb 27. [Consultado 2020 Dec 16]. Disponible en: https://www.who.int/es/news/item/27-02-2017- who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-neededspa
dc.relation.referencesPeña C, Cabot G, Gómez-Zorrilla S, Zamorano L, Ocampo-Sosa A, Murillas J et al. Spanish Network for Research in Infectious Diseases (REIPI). Influence of virulence genotype and resistance profile in the mortality of Pseudomonas aeruginosa bloodstream infections. Clin Infect Dis [online] 2015 Feb 15;60(4):539-48. [Consulted 2020 Dec 16]. Available from: https://pubmed.ncbi.nlm.nih.gov/25378459/spa
dc.relation.referencesSader, H., Castanheira, M., Duncan, L.et al. Antimicrobial Susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa Isolates from United States Medical Centers Stratified by Infection Type: Results from the International Network for Optimal Resistance Monitoring (INFORM) Surveillance Program, 2015-2016. Diagnostic microbiology and infectious disease, [online] 69–74. [Consulted 2020 Dec 17].Available in: https://doi.org/10.1016/j.diagmicrobio.2018.04.012spa
dc.relation.referencesHorcajada, J, Montero, M., Oliver, A., Sorlí, L., Luque, S.,et al.Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clinical microbiology reviews, [online] 2019 32(4),[Consulted 2020 Dec 16] Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6730496/spa
dc.relation.referencesLabarca J ,Costa M, Seas C, Guzman M. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in the nosocomial setting in Latin America. Rev Microbiol [online]. 2016; 42: 276-292. [Cited 2020 ago 5]. .Available in: https://www.tandfonline.com/doi/full/10.3109/1040841X.2014.940494spa
dc.relation.referencesDing, C., Yang, Z., Wang, J., Liu, X., Cao, Y., Pan, Y.,et al. Prevalence of Pseudomonas aeruginosa and antimicrobial-resistant Pseudomonas aeruginosa in patients with pneumonia in mainland China: a systematic review and meta-analysis. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases,[online].2016;49, 119–128. [Consulted 2020 Dec 18]. Available in: https://www.ijidonline.com/article/S1201-9712(16)31099-2/fulltextspa
dc.relation.referencesHurley JC. Worldwide variation in Pseudomonas associated ventilator associated pneumonia. A meta-regression. J Crit Care. [online]. 2019;51:88-93. [Consulted 2020 Dec 18]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S0883944118317866?via%3Dihubspa
dc.relation.referencesRestrepo M, Babu B, Reyes L, Chalmers J, Soni N,et al.Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: a multinational point prevalence study of hospitalised patients. Eur Respir J.[online]. 2018 Aug 9;52(2):1701190. [Consulted 2020 Dec 18]. Available in: https://erj.ersjournals.com/content/52/2/1701190.longspa
dc.relation.referencesWongsurakiat P, Chitwarakorn N. Severe community-acquired pneumonia in general medical wards: outcomes and impact of initial antibiotic selection. BMC Pulm Med. [online].2019 Oct 16;19(1):179. [Consulted 2020 Dec 20]. Available in: https://pubmed.ncbi.nlm.nih.gov/31619219/spa
dc.relation.references. Sopeña R, Medina J, Justo J et al. Healthcare-Associated Infections after Lower Urinary Tract Endoscopic Surgery: Analysis of Risk Factors, Associated Microorganisms and Patterns of Antibiotic Resistance. Urol Int.[online]. 2018;100(4):440-444. [Consulted 2020 Dec 20]. Available in: https://pubmed.ncbi.nlm.nih.gov/29649830/spa
dc.relation.referencesMedina J., Sopeña R., Benítez R., Lara A., Alonso- M., et al. Prospective study analyzing risk factors and characteristics of healthcare-associated infections in a Urology ward. Investigative and clinical urology, [online]. 2017; 58(1), 61–69. [Consulted 2020 Dec 20]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240291/spa
dc.relation.referencesOliver, A., Mulet, X., López C,Juan C.The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy, [online]2015, 41–59.[Consulted 2020 Dec 20] Available in:.https://doi.org/10.1016/j.drup.2015.08.002spa
dc.relation.referencesVega S, Dowzicky M, Antimicrobial susceptibility among Gram-positive and Gramnegative organisms collected from the Latin American region between 2004 and 2015 as part of the Tigecycline Evaluation and Surveillance Trial. Ann Clin Microbiol Antimicrob.[online]. 2017 Jul 12;16(1):50.[Consulted 2021 April 28]. Available from:https://pubmed.ncbi.nlm.nih.gov/28701170/spa
dc.relation.referencesDiekema D, Hsueh P, Mendes R, Pfaller M, Rolston K, Sader H et al. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother [online]. 2019 Jul; 63(7): 355. [Consulted 2021 Apr 28]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6591610/spa
dc.relation.referencesShortridge D, Ptaller M, Streit J, Flamm D. Antimicrobial activity of ceftolozane/tazobactam tested against contemporary (2015-2017) Pseudomonas aeruginosa isolates from a global surveillance programme. Journal of Global Antimicrobial Resistance [online]. 2020; 21: 60- 64. [Consulted 2021 Apr 28]. Available from: https://pubmed.ncbi.nlm.nih.gov/31648032/spa
dc.relation.referencesSaavedra S, Duarte C, González M, Realpe M. Characterization of isolates of carbapenemase-producing Pseudomonas aeruginosa from seven Colombian provinces.Biomédica INS [online]. 2014; 34:217-23. [Consulted 2021 Apr 28]. Available from: https://revistabiomedica.org/index.php/biomedica/article/view/1685spa
dc.relation.referencesChavez M, Cabezas F, Ferauds M, Castillo J, Caicedo L. Antimicrobial resistance patterns and genotypic diversity between clinical and water systems isolates of Pseudomonas aeruginosa in Cali, Colombia. Tropical Biomedicine [online]. 2020; 37(3): 650–662. [Consulted 2021 Apr 28]. Available from: https://pubmed.ncbi.nlm.nih.gov/33612779/spa
dc.relation.referencesGarcía J.Appel M,Esparza G, Gales A,Levy-Hara G,Cornistein W, et al.Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert review of anti-infective therapy, 2021; 19(2):197–213. [Consulted 2021 Apr 28]. Available from: https://doi.org/10.1080/14787210.2020.1813023spa
dc.relation.referencesVanegas J, Cienfuegos A, Ocampo A, López L, Corral H, Roncancio G et al. Similar frequencies of Pseudomonas aeruginosa isolates producing KPC and VIM carbapenemases in diverse genetic clones at tertiary-care hospitals in Medellín, Colombia. J Clin Microbiol [online]. 2014 Nov; 52(11): 3978-86. [Consulted 2021 Apr 28]. Available from: https://pubmed.ncbi.nlm.nih.gov/25210071/spa
dc.relation.referencesPonce de Leon A, Merchant S, Raman G,Avendano E,Chan J, Hernandez, G et al Pseudomonas infections among hospitalized adults in Latin America: a systematic review and meta-analysis. BMC infectious diseases,[online] 2020;20(1),250.Available from: .[Consulted 2021 Jan 10]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099820/spa
dc.relation.referencesInstituto Nacional de Salud (INS). Resultados del Programa de Vigilancia por Laboratorio de Resistencia Antimicrobiana en Infecciones Asociadas a la Atención en Salud (IAAS) 2016. Disponible en: https://www.ins.gov.co/buscadoreventos/Informacin%20de%20laboratorio/Informe%20Vigilancia%20por%20Laboratorio %20Resistencia%20Antimicrobiana%20y%20Whonet%20IAAS%202016.pdfspa
dc.relation.referencesFernández-Barat L, Ferrera M, De Rosa F, Gabarrús A, Esperatti M, Terraneo S et al. Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance.Journal of infection [online]. 2017; 74 (2): 142-152.[Consulted 2021 Jan 10]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0163445316302900spa
dc.relation.referencesGill J,Arora S, Khanna S, Kumar H. Prevalence of Multidrug-resistant, Extensively Drug-resistant, and Pandrug-resistant Pseudomonas aeruginosa from a Tertiary Level Intensive Care Unit.,J Glob Infect D [online]. 2016; 8 (4): 155-159. [Consulted 2021 Jan 10]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5126754/spa
dc.relation.referencesIncreasing Incidence of Multidrug Resistance Among Cystic Fibrosis Respiratory Bacterial Isolates. Cliff W, Burgess D, Burgess D. Microbial drug resistance [online]. 2017; 23 (1): 51-55. [Consulted 2021 Jan 10]. Available from: https://www.liebertpub.com/doi/abs/10.1089/mdr.2016.0048spa
dc.relation.referencesEmergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Pachori P, Gothalwal R, Gandhi P. Genes and diseases [online]. 2019; 6 (2): 109-119. [Consulted 2021 Jan 10]. Available from: https://www.sciencedirect.com/science/article/pii/S2352304219300170(16)spa
dc.relation.referencesPrevalence and Some Possible Mechanisms of Colistin Resistance Among MultidrugResistant and Extensively Drug-Resistant Pseudomonas aeruginosa. El-Baky R, Masoud S, Mohamed D, Waly N, Shafik E, Elkady A et al. Infection and drug resistance [online]. 2020; 13: 323-332. [Consulted 2021 Jan 10]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006860/spa
dc.relation.referencesEmergence and Spread of Epidemic Multidrug-Resistant Pseudomonas aeruginosa. Miyoshi-Akiyama T, Tada T, Ohmagari N, Viet N, Tharavichitku P, Pokhrel B et al. Genome biology and evolution [online]. 2017: 9 (12): 3238-3245. [Consulted 2021 Jan 10]. Available from: https://academic.oup.com/gbe/article/9/12/3238/4675324?login=truespa
dc.relation.referencesMultidrug resistant Pseudomonas aeruginosa in Estonian hospitals. Laht M, Brauer A, Remm M, Kisand V, Maimets M, Tenson T et al. BMC Infectious diseases [online]. 2018; 18: 513. [Consulted 2021 Jan 10]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182868/spa
dc.relation.references. Ceftolozane-Tazobactam for the Treatment of Multidrug-Resistant Pseudomonas aeruginosa Infections: Clinical Effectiveness and Evolution of Resistance. Haidar G, Phillips N, Shields R, Snyder D, Cheng S, Potoski B et al. Clinical Infectious Diseases [online]. 2017; 65 (1): 110-120. [Consulted 2020 Jan 10]. Consulted from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5848332/spa
dc.relation.referencesCharacterization of clinical extensively drug-resistant Pseudomonas aeruginosa in the Hunan province of China. Dou Q, Hu Y, Wang H, Yan Q, Liu W. Ann Clin Microbiol Antimicrob [online]. 2016; 15: 35. [Consulted 2021 Jan 10]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877936/8spa
dc.relation.referencesCharacterization of clinical extensively drug-resistant Pseudomonas aeruginosa in the Hunan province of China. Dou Q, Hu Y, Wang H, Yan Q, Liu W. Ann Clin Microbiol Antimicrob [online]. 2016; 15: 35. [Consulted 2021 Jan 10]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877936/8spa
dc.relation.referencesMurugan N,Malathi J,Umashankar V, Madhavan H.Unraveling genomic and phenotypic nature of multidrug-resistant (MDR) Pseudomonas aeruginosa VRFPA04 isolated from keratitis patient.Microbiological Research [online].2016;193:140-144.[Consulted 2021 April 30]. Available from:https://www.sciencedirect.com/science/article/pii/S094450131630249X?via%3Dihu b#fig0020spa
dc.relation.referencesJaillard M , Belkum A,Cady K.Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa . Journal of Genetic Engineering .Clin Infect Dis [online] 2020 19 Jun 15;60(4):539-48. [Consulted April 28 ]. Available from: https: www.sciencedirect.com/science/article/pii/S0924857917301632spa
dc.relation.referencesGaletti R, Andrade L,Varani A, Darini A.SPM-1-producing Pseudomonas aeruginosa ST277 carries a chromosomal pack of acquired resistance genes: An example of high-risk clone associated with 'intrinsic resistome'. J Glob Antimicrob Resist.Journal of Global Antimicrobial Resistance. [online] 2019 March 16:183-186. [Consulted April 29 2021]. Available from: https://pubmed.ncbi.nlm.nih.gov/30586621/spa
dc.relation.referencesMadaha E, Mienie C, Gonsu HK, Bughe RN, Fonkoua MC, Mbacham WF, Alayande KA, Bezuidenhout CC, Ateba CN. Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human broncho-alveolar lavage, Yaoundé, Cameroon. PLoS One. [online] 2020 Sep 4;15 [Consulted 2020 Dec 27]. Available in: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473557/spa
dc.relation.referencesSedighi M, Moghoofei M, Kouhsari E, Pournajaf A, Emadi B, Tohidfar M, Gholami M. In silico analysis and molecular modeling of RNA polymerase, sigma S (RpoS) protein in Pseudomonas aeruginosa PAO1. Rep Biochem Mol Biol.[online] 2015 Oct;4(1):32-42 [Consulted 2021 Jan 12]. Available in: https://pubmed.ncbi.nlm.nih.gov/26989748/spa
dc.relation.referencesDash R, Hosen S, Sultana T, Junaid M, Majumder M, Ishat IA, et al. Computational Analysis and Binding Site Identification of Type III Secretion System ATPase from Pseudomonas aeruginosa. Interdiscip Sci.[online] 2016 Dec;8(4):403-411. [Consulted 2021 April 12]. Available in: https://link.springer.com/article/10.1007%2Fs12539-015- 0121-z#Bib1spa
dc.relation.referencesPramanik K, Kumar P, Ray S, Sarkar A, Mitra S, Kanti T. An in silico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa. Journal of Genetic Engineering and Biotechnology [online]. 2017; 15: 527-537. [Consulted 2021 April 12]. Available in: https://www.sciencedirect.com/science/article/pii/S1687157X17300288spa
dc.relation.referencesBurrows LL. The Therapeutic Pipeline for Pseudomonas aeruginosa Infections. ACS Infect Dis.[online] 2018 Jul 13;4(7):1041-1047. [Consulted 2020 Dec 20]. Available in:https://pubs.acs.org/doi/10.1021/acsinfecdis.8b00112spa
dc.relation.referencesSo A, Yu X, Robbie G, et al.Phase 1 study of MEDI3902, an investigational antiPseudomonas aeruginosa PcrV and Psl bispecific human monoclonal antibody, in healthy adults. Clin Microbiol Infect. [online] 2019 May 29; 25:629.e1-629.e6. [Consulted 2021 April 27]. Available in: clinicalmicrobiologyandinfection.com/article/S1198- 743X(18)30576-7/fulltextspa
dc.relation.referencesPang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv.[online] 2019 Jan-Feb;37(1):177-192. [Consulted 2020 Dec 20]. Available in: https://www.sciencedirect.com/science/article/pii/S0734975018301976?via%3Dihubspa
dc.relation.referencesXu Z, Li Y, Yan A. Repurposing the Native Type I-F CRISPR-Cas System in Pseudomonas aeruginosa for Genome Editing. STAR protocols [online]. 2020; 1 (1). [Consulted 2021 Apr 1]. Available in: https://www.sciencedirect.com/science/article/pii/S2666166720300265#!spa
dc.relation.referencesAlexandre L, Juliette S, Léna F.Combined Bacteriophage and Antibiotic Treatment Prevents Pseudomonas aeruginosa Infection of Wild Type and cftr- Epithelial Cells.frontiers in Microbilogy.Clin Infect Dis [online] 2020 Agos 27. [Consulted 2020 Feb 05]. Available from: https://www.frontiersin.org/articles/10.3389/fmicb.2020.01947/fullspa
dc.relation.referencesBroniewski J, Chisnall M, Høyland-Kroghsbo N, Buckling A, Westre E. The effect of Quorum sensing inhibitors on the evolution of CRISPRbased phage immunity in Pseudomonas aeruginosa. The ISME Journal [online]. 2021. [Consulted 2021 Apr 28]. Available in: https://www.nature.com/articles/s41396-021-00946-6spa
dc.relation.referencesDumont M, Luke C, Deng Y, Frezel P. Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Frontiers in microbiology [online]. 2014 Feb; 5 (34). [Consulted 2021 Mar 11]. Available from: https://doi.org/10.3389/fmicb.2014.00034spa
dc.relation.referencesSchmidt A, Forne I, Imhof A. Bioinformatic analysis of proteomics data. BMC Systems Biology [online]. 2014 Mar; 8 (2). [Consulted 2021 Mar 11]. Available from: https://bmcsystbiol.biomedcentral.com/articles/10.1186/1752-0509-8-S2-S3spa
dc.relation.referencesPal A, Saha B, Saha, J. Comparative in silico analysis of ftsZ gene from different bacteria reveals the preference for core set of codons in coding sequence structuring and secondary structural elements determination. PloS One. [online] 2019 Dec14(12[Consulted 2020 Feb 28]. Available in: https://doi.org/10.1371/journal.pone.0219231spa
dc.relation.referencesSrivastava V, Kaushik S, Jyoti A. A comparative in silico analysis of Rab5 proteins from pathogenic species to find its role in the pathogenesis. J Mol Recognit. 2019 Dec;32(12) [Consulted 2020 Marz 8]Available in: https://onlinelibrary.wiley.com/doi/abs/10.1002/jmr.2808spa
dc.relation.referencesKalpesh A, Sagar P, Hetalkumar P. DNA Sequence analysis by ORF FINDER & GENOMATIX Tool: Bioinformatics Analysis ofsome tree species of Leguminosae Family [online]. 2015 Mar;6.[Consulted 2021 Mar 9]. Available from:https://scihub.se/10.1109/BIBMW.2012.6470265spa
dc.relation.referencesPanu A, Manohar J, Konstantin A, Delphine. B.ExPASY: SIB bioinformatics resource portal, Nucleic Acids Research [online].2012 July;1(40).[Consulted 2021 Mar 11]. Available from:https://academic.oup.com/nar/article/40/W1/W597/1073688?login=truespa
dc.relation.referencesLima W, Gasteiger E, Marcatili P, Duek P, Bairoch A, Cosson P. The ABCD database: a repository for chemically defined antibodies. Nucleic acids research [online]. 2019 Aug; 48 (1): 261-264. [Consulted 2021 Mar 11]. Available from: https://doi.org/10.1093/nar/gkz714spa
dc.relation.referencesAndrew B, Shapor N, Jie L.CASTp: Computed Atlas of Surface Topography of proteins. Nucleic Acids Research [online].2003 July;17(31).[Consulted 2021 Mar 10]. Available from: https://academic.oup.com/nar/article/31/13/3352/2904134?login=truespa
dc.relation.referencesFernando P, Ana M, Lilian F. Pseudomonas aeruginosa-neumonía adquirida en la comunidad en un hombre previamente sano expuesto ocupacionalmente a fluidos metalúrgicos.[online].2003 Agos;17.[Consulted 2021 Mayo 20]. Available https://www.revistas.usp.br/autopsy/article/view/98475spa
dc.relation.referencesSara A, Ochoa F, Gerardo E.Pathogenic characteristics of Pseudomonas aeruginosa strains resistant to carbapenems associated with biofilm formation [online].2018 April;27.[Consulted 2021 Mayo 20]. Available http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1665- 11462013000200010spa
dc.relation.referencesLaura B,Resistencia antibiótica en Pseudomonas situación epidemiológica en España y alternativas de tratamiento.[online].2018 Feb;17.[Consulted 2021 Jun 20]. Available http://147.96.70.122/Web/TFG/TFG/Memoria/LAURA%20BRAVOBURGUILLOS%20ROS.pdfspa
dc.relation.referencesDianny V, Betalactamasas tipo AmpC: Generalidades y métodos para detección fenotípica Research[online].2020 July; 20.[Consulted 2021 Agost 24]. Available http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1315-25562009000200003spa
dc.relation.references. Gonçalves IR, Cavalcanti RC, Ferreira ML, Fonseca DJ, Gontijo-Filho P P, Marques R. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. nt. J. Med. Microbiol. [online]. 2017; 48. [Cited 2021 Jun 5]. Available in: https://www.scielo.br/scielo.php?pid=S1517- 83822017000200211&script=sci_arttextspa
dc.relation.referencesValderrama SS, González PF, Caro MA, Ardila N, Ariza B, Gil F, et al. Factores de riesgo para bacteriemia por Pseudomonas aeruginosa resistente a carbapenémicos adquirida en un hospital colombiano. Rev. Biomédica [Internet]. 2016; 36 [Consultado 2021 may 5]. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-41572016000500010spa
dc.relation.referencesBreazeale S, Ribeiro A, McClerren A. A Formyltransferase Required for Polymyxin Resistance in Escherichia coli and the Modification of Lipid A with 4-Amino-4-deoxy-L -arabinose. J. Int. Soc. Burn Inj. [online]. 2016; 43 [Cited 2020 sep 5]. Available in: https://www.jbc.org/content/280/14/14154.shortspa
dc.relation.referencesChoudhury D, Paul D, Ghosh A, Talukdar A, Choudhury D, Maurya A, et al. Effect of single-dose carbapenem exposure on transcriptional expression of blaNDM-1 and mexA in Pseudomonas aeruginosa. J Glob Antimicrob Resist [online]. 2016; 7: 72-77 [Cited 2020 4 sep]. Available in: https://www.sciencedirect.com/science/article/abs/pii/S221371651630087X?via%3Dihuspa
dc.relation.referencesSharma A, Sharma R, Bhattacharyya T. Fosfomycin resistance in Acinetobacter baumannii is mediated by efflux through a major facilitator superfamily (MFS) 63 transporter—AbaF. Journal of microbiology [online]. 2016. [Cited 2020 oct l2]. Available in: https://pubmed.ncbi.nlm.nih.gov/27650185/spa
dc.relation.referencesYousefian N, Ornik-Cha A, Poussard S, et al. Structural characterization of the EmrABTolC efflux complex from E. coli. Biochim Biophys Acta Biomembr.[online].2021. [Cited 2021 sep l2]. Available in:https://www.sciencedirect.com/science/article/abs/pii/S000527362030331X?via%3Dih ubspa
dc.relation.referencesHeacock-Kang Y, Sun Z, Zarzycki-Siek J, et al. Two Regulators, PA3898 and PA2100, Modulate the Pseudomonas aeruginosa Multidrug Resistance MexAB-OprM and EmrAB Efflux Pumps and Biofilm Formation. Antimicrob Agents Chemother. [online]. 2016. [Cited 2021 Aug 23]. Available in: https:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6256797/spa
dc.relation.referencesGatzeva-Topalova P, May A, Sousa M. Crystal structure of Escherichia coli ArnA (PmrI) decarboxylase domain. A key enzyme for lipid A modification with 4-amino-4-deoxy-Larabinose and polymyxin resistance. Biochemistry [online]. 2004 Oct 26; 43(42): 13370- 9. [Cited 2021 Aug 23]. Available in: doi: 10.1021/bi048551fspa
dc.relation.referencesMaristela Previato M, Diogo de Abreu M, Luis Eduardo S, et al.Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in Chromobacterium violaceum. [online].2017. [Cited 2021 April 13]. Available in: https://pubmed.ncbi.nlm.nih.gov/28507067/spa
dc.relation.referencesRhoda Nsen B, Marie Christine F, Wilfred Fon M.Whole-genome sequence of multi-drug resistant Pseudomonas aeruginosa strains UY1PSABAL and UY1PSABAL2 isolated from human broncho-alveolar lavage, Yaoundé, Cameroon [online].2020. [Cited 2021 Jul 19]. Available in: https://pubmed.ncbi.nlm.nih.gov/32886694/spa
dc.relation.referencesMutations that increase expression of the EmrAB-TolC efflux pump confer increased resistance to nitroxoline in Escherichia coli. Puértolas-Balint F, Warsi O, Linkevicius M, Tang P, Andersson D. Journal of Antimicrobial Chemotherapy [online].2020; 75 (2): 300– 308. [Consulted 2022 Jan 02]. Available from: https://doi.org/10.1093/jac/dkz434spa
dc.relation.referencesGatzeva-Topalova PZ, May AP, Sousa MC. Structure and mechanism of ArnA: conformational change implies ordered dehydrogenase mechanism in key enzyme for polymyxin resistance. Structure [online]. 2005 Jun;13(6):929-42. [Cited 2021 Jul 19]. Available in: doi: 10.1016/j.str.2005.03.018. PMID: 15939024; PMCID: PMC2997725.spa
dc.relation.referencesYaron S, White D, Matthews K. Characterization of an Escherichia coli O157:H7 marR mutant. International Journal of Food Microbiology [online].2003;85(3):281-291. [Consulted 2022 Jan 02]. Available from: https://doi.org/10.1016/S0168-1605(02)00547- 0spa
dc.relation.references. Contributions of mutations in acrR and marR genes to organic solvent tolerance in Escherichia coli. Watanabe R, Doukyu N. AMB Expr [online]. 2012; 58. [Consulted 2022 Jan 02]. Available from: https://doi.org/10.1186/2191-0855-2-58spa
dc.relation.referencesMasood K, Umar S, Hasan Z et al. Lipid A-Ara4N as an alternate pathway for (colistin) resistance in Klebsiella pneumoniae isolates in Pakistan. BMC Res Notes [online]. 2021; 449 (14). [Consulted 2022 Jan 02]. Available from: https://doi.org/10.1186/s13104-021- 05867-3spa
dc.relation.referencesSonwane K, Parulekar R, Malkar R, Nimbalkar P, Barage S, Jadhav D. Homology modeling and molecular docking studies of ArnA protein from Erwinia amylovora: role in polymyxin antibiotic resistance. J. Plant Biochem. Biotechnol [online]. 2015; 24: 225-232. [Consulted 2022 Jan 02]. Available from: https://doi.org/10.1007/s13562-014-0293-3spa
dc.relation.referencesWarner D, Yang Q, Duvai V, Chen M, Xu Y, Levy S. Involvement of MarR and YedS in Carbapenem Resistance in a Clinical Isolate of Escherichia coli from China. Antimicrobial Agents and Chemotherapy [online]. 2013; 57(4): 1935-1937. [Consulted 2022 Jan 02]. Available from:https://doi.org/10.1128/AAC.02445-12spa
dc.relation.referencesWiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res [online]. 2007 Jul; 35: 407- 10. [Consulted 2022 Jan 02]. Available from: doi: 10.1093/nar/gkm290spa
dc.relation.referencesLigand-responsive transcriptional regulation by members of the MarR family of winged helix protein. Steven Wilkinson, Anne Grove.Journal of Antimicrobial Chemotherapy [online].2008;54–55. [Consulted 2022 Jan 03]. Available from: https://www.researchgate.net/publication/7322964_Ligandresponsive_transcriptional_regulation_by_members_of_the_MarR_family_of_winged_he lix_proteinspa
dc.relation.referencesRoy A, Xu D, Poisson J, Zhang, Y. A Protocol for Computer-Based Protein Structure and Function Prediction.J. Vis. Exp.[online].2011;57. [Consulted 2021 Sep 02]. Available from: https://www.jove.com/es/t/3259/a-protocol-for-computer-based-protein-structurefunctionspa
dc.relation.referencesWiederstein M, Manfred J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids ResearchCristian Ruiz, Stuart Levy.Many Chromosomal Genes Modulate MarA-Mediated Multidrug Resistance in Escherichia colihttps://doi.org/10.1093/nar/gkm290spa
dc.relation.referencesAnnette Lin, Henry Gerken, LilyTan. Alcohol tolerance of Escherichia coli acrR and marR regulatory mutants ,[online].2012.[Consulted 2022 Feb 13]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1381117711002943spa
dc.relation.referencesCristian Ruiz, Stuart Levy.Many Chromosomal Genes Modulate MarA-Mediated Multidrug Resistance in Escherichia coli ,[online].2010.[Consulted 2022 Feb 14]. Available from: https://journals.asm.org/doi/full/10.1128/AAC.01420-09spa
dc.relation.referencesLisa Alzrigat ,Douglas Huseby,Gerrit Brandis. Resistance/fitness trade-off is a barrier to the evolution of MarR inactivation mutants in Escherichia coli. Journal of Antimicrobial Chemotherapy [online]. 2010; 76 (1). [Consulted 2022 Feb 4]. Available from: https://academic.oup.com/jac/article/76/1/77/5934855?login=falsespa
dc.relation.referencesBorges W,Beauchamp J,, Walmsley et al.Identification of Oligomerization and Drugbinding Domains of the Membrane Fusion Protein EmrA*,Journal of Biological Chemistry,[online]. 2003; 24. [Consulted 2021 Dic 13]. Available from:https://linkinghub.elsevier.com/retrieve/pii/S0021-9258(19)64662-4spa
dc.relation.referencesKhademi F, Maarofi K, Arzanlou M, Peeri H, Sahebkar A. Which missense mutations associated with DNA gyrase and topoisomerase IV are involved in Pseudomonas aeruginosa clinical isolates resistance to ciprofloxacin in Ardabil?. Gene Reports [online]. 2021; 24. [Consulted 2022 May 18]. Available from: https://www.sciencedirect.com/science/article/pii/S2452014421001965?via%3Dihubspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalPseudomonas aeruginosaeng
dc.subject.proposalproteínaspa
dc.subject.proposalgenspa
dc.subject.proposalmultidrogorresistenciaspa
dc.subject.proposalblancos terapéuticosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022