Mostrar el registro sencillo del ítem

dc.contributor.advisorPinillos Medina, Ingrid
dc.contributor.authorAguirre Borda, Sara Ximena
dc.contributor.authorMontenegro Flórez, Stacy Alexandra
dc.contributor.authorÁlvarez Hernández, Laura Valentina
dc.date.accessioned2023-04-13T15:32:22Z
dc.date.available2023-04-13T15:32:22Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/6518
dc.description.abstractLa mastitis es la inflamación de la glándula mamaria ocasionada por diferentes microorganismos, entre ellos bacterias como Staphylococcus aureus, Escherichia coli, Streptococcus agalactiae, Streptococcus uberis, Streptococcus dysgalactiae, entre otros; esta enfermedad trae consigo no solo la afección en la salud animal, en el caso de esta revisión: salud bovina, sino grandes pérdidas económicas. El método comúnmente usado para tratar esta infección son los antibióticos, sin embargo, debido a la creciente resistencia a estos, es necesario buscar alternativas que cumplan con la misma función de erradicar la enfermedad; es por esto que el objetivo de esta revisión es el de buscar alternativas encaminadas a disminuir o sustituir el uso de antibióticos en el tratamiento a la mastitis mostrando posibilidades que ayuden al sistema inmune a responder mejor contra los patógenos, así como también, extractos de plantas con potencial antimicrobiano y diferentes alternativas químicas.spa
dc.description.tableofcontentsResumen ejecutivo 1. Planteamiento del problema 8 1.1. Pregunta problema 9 2. Justificación 10 3. Impacto esperado 11 4. Usuarios directos e indirectos 11 5. Objetivos 11 5.1 Objetivo general 5.2 Objetivos específicos 6. Marco teórico 12 6.1 Antecedentes 6.2 Bases teóricas 6.3 Bases legales 7. Metodología 20 7.1. Tipo de estudio 7.2. Enfoque de investigación 7.3. Población 7.4. Muestra 7.5. Criterios de exclusión 7.6. Criterios de inclusión 8. Resultados 21 9. Discusión 35 10. Conclusiones 39 Referencias 41spa
dc.format.extent49p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleRevisión sistemática sobre alternativas de tratamiento de Mastitis bovina, frente a la resistencia a antibióticosspa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotaspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesJaramillo A, Cobo C, Moreno Y, Ceballos A. Resistencia antimicrobiana de Streptococcus agalactiae de origen humano y bovino [Internet]. Redalyc.org. 2018 [citado el 31 de marzo de 2022]. Disponible en: https://www.redalyc.org/journal/3214/321457137006/html/spa
dc.relation.referencesChiesa L, DeCastelli L, Nobile M, Martucci F, Mosconi G, Fontana M, et al. Analysis of antibiotic residues in raw bovine milk and their impact toward food safety and on milk starter cultures in cheese-making process. Lebenson Wiss Technol [Internet]. 2020;131(109783):109783. Disponible en: http://dx.doi.org/10.1016/j.lwt.2020.109783spa
dc.relation.referencesBonilla M, Gutiérrez N, Posada I. Prevalencia de mastitis bovina en el Cañón de Anaime, región lechera de Colombia, incluyendo etiología y resistencia antimicrobiana. Rev Investig Vet Perú [Internet]. 2018 [citado el 31 de marzo de 2022];29(1):226–39. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1609- 91172018000100022spa
dc.relation.referencesVillanueva T. Gonzalo, Morales C., Siever. Resistencia antibiótica de patógenos bacterianos aislados de mastitis clínica en bovinos de crianza intensiva [Internet]. Redalyc.org. 2017 [citado el 31 de marzo de 2022]. Disponible en: https://www.redalyc.org/pdf/636/63654640046.pdfspa
dc.relation.referencesJiménez S, Torres Higuera L, Parra Arango J, Rodríguez Bautista J, García F, Patiño R. Profile of antimicrobial resistance in isolates of Staphylococcus spp. obtained from bovine milk in Colombia. Rev Argent Microbiol [Internet]. 2020;52(2):121–30. Disponible en: https://www.sciencedirect.com/science/article/pii/S0325754119300604spa
dc.relation.referencesOrganización mundial de Sanidad animal OM. Estrategia de la OIE sobre la resistencia a los agentes antimicrobianos y su uso prudente [Internet]. Oie.int. 2016 [citado el 31 de marzo de 2022]. Disponible en: https://www.oie.int/app/uploads/2021/03/es-oieamrstrategy.pdfspa
dc.relation.referencesMinisterio de Agricultura y Desarrollo Rural, Instituto Colombiano Agropecuario, Subgerencia de Protección y Regulación Pecuaria, Grupo de Inocuidad en Cadenas Agroalimentarias Pecuarias. LAS BUENAS PRÁCTICAS GANADERAS EN LA PRODUCCIÓN DE LECHE, EN EL MARCO DEL DECRETO 616 [Internet]. Gov.co. 2007 [citado el 31 de marzo de 2022]. Disponible en: http://ica.gov.co/getattachment/049aef47-c6e3-43d9-826b-e163f8b40e98/Publicacion23.aspxspa
dc.relation.referencesLlanos S, Vezeau N, Wemette M, Bulut E, Greiner A, Moroni P, et al. Survey of perceptions and attitudes of an international group of veterinarians regarding antibiotic use and resistance on dairy cattle farms. Prev Vet Med [Internet]. 2021;188(105253):105253. Disponible en: https://www.sciencedirect.com/science/article/pii/S0167587720309375spa
dc.relation.referencesBelloso, W, & Histórica, R. (s/f). Historia de los antibióticos. org.ar. [Internet]. 2009; Disponible en: https://www.hospitalitaliano.org.ar/multimedia/archivos/noticias_attachs/47/documentos/ 7482_102-111-belloso.pdfspa
dc.relation.referencesJiménez G, Villegas J, Calderón A, Rodríguez V, Maza L, et al. Raw milk quality in Northwestern Colombia. Rev Colomb Cienc Pecu [Internet]. 2016;29(3). Disponible en: http://dx.doi.org/10.17533/udea.rccp.v29n3a06spa
dc.relation.referencesJamali H, Krylova K, Aïder M. Identification and frequency of the associated genes with virulence and antibiotic resistance of Escherichia coli isolated from cow’s milk presenting mastitis pathology. Anim Sci J [Internet]. 2018;89(12):1701–6. Disponible en: http://dx.doi.org/10.1111/asj.13093spa
dc.relation.referencesYang F, Zhang S, Shang X, Wang X, Wang L, Yan Z, et al. Prevalence and characteristics of extended spectrum β-lactamase-producing Escherichia coli from bovine mastitis cases in China. J Integr Agric [Internet]. 2018;17(6):1246–51. Disponible en: http://dx.doi.org/10.1016/s2095-3119(17)61830-6spa
dc.relation.referencesBhattarai D, Worku T, Dad R, Rehman Z, Gong X, Zhang S. Mechanism of pattern recognition receptors (PRRs) and host pathogen interplay in bovine mastitis. Microb Pathog [Internet]. 2018;120:64–70. Disponible en: http://dx.doi.org/10.1016/j.micpath.2018.04.010spa
dc.relation.referencesGao X, Fan C, Zhang Z, Li S, Xu C, Zhao Y, et al. Enterococcal isolates from bovine subclinical and clinical mastitis: Antimicrobial resistance and integron-gene cassette distribution. Microb Pathog [Internet]. 2019;129:82–7. Disponible en: http://dx.doi.org/10.1016/j.micpath.2019.01.031spa
dc.relation.referencesSrednik M, Crespi E, Testorelli M, Puigdevall T, Pereyra A, Rumi M, et al. First isolation of a methicillin-resistant Staphylococcus aureus from bovine mastitis in Argentina. Vet Anim Sci [Internet]. 2019;7(100043):100043. Disponible en: http://dx.doi.org/10.1016/j.vas.2018.11.004spa
dc.relation.referencesSong X, Huang X, Xu H, Zhang C, Chen S, Liu F, et al. The prevalence of pathogens causing bovine mastitis and their associated risk factors in 15 large dairy farms in China: An observational study. Vet Microbiol [Internet]. 2020;247(108757):108757. Disponible en: http://dx.doi.org/10.1016/j.vetmic.2020.108757spa
dc.relation.referencesLan T, Liu H, Meng L, Xing M, Dong L, Gu M, et al. Antimicrobial susceptibility, phylotypes, and virulence genes of Escherichia coli from clinical bovine mastitis in five provinces of China. Food Agric Immunol [Internet]. 2020;31(1):406–23. Disponible en: http://dx.doi.org/10.1080/09540105.2020.1736009spa
dc.relation.referencesZhang H, Yang F, Li X, Luo J, Wang L, Zhou Y, et al. Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China. J Integr Agric [Internet]. 2020;19(11):2784–91. Disponible en: http://dx.doi.org/10.1016/s2095- 3119(20)63185-9spa
dc.relation.referencesFuenzalida M, Furmaga E, Aulik N. Antimicrobial resistance in Klebsiella species from milk specimens submitted for bovine mastitis testing at the Wisconsin Veterinary Diagnostic Laboratory, 2008–2019. JDS Communications [Internet]. 2021;2(3):148–52. Disponible en: http://dx.doi.org/10.3168/jdsc.2020-0031spa
dc.relation.referencesBag M, Khan M, Sami M, Begum F, Islam M, Rahman M, et al. Virulence determinants and antimicrobial resistance of E. coli isolated from bovine clinical mastitis in some selected dairy farms of Bangladesh. Saudi J Biol Sci [Internet]. 2021;28(11):6317–23. Disponible en: http://dx.doi.org/10.1016/j.sjbs.2021.06.099spa
dc.relation.referencesMolineri A, Camussone C, Zbrun M, Suárez Archilla G, Cristiani M, Neder V, et al. Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis: Systematic review and meta-analysis. Prev Vet Med [Internet]. 2021;188(105261):105261. Disponible en: http://dx.doi.org/10.1016/j.prevetmed.2021.105261spa
dc.relation.referencesTesfaye K, Gizaw Z, Haile AF. Prevalence of mastitis and phenotypic characterization of methicillin-resistant Staphylococcus aureus in lactating dairy cows of selected dairy farms in and around Adama town, Central Ethiopia. Environ Health Insights [Internet]. 2021;15:11786302211021296. Available from: http://dx.doi.org/10.1177/11786302211021297spa
dc.relation.referencesAbd El-Aziz N, Ammar A, El-Naenaeey E, El Damaty H, Elazazy A, Hefny A, et al. Antimicrobial and antibiofilm potentials of cinnamon oil and silver nanoparticles against Streptococcus agalactiae isolated from bovine mastitis: new avenues for countering resistance. BMC Vet Res [Internet]. 2021;17(1):136. Disponible en: http://dx.doi.org/10.1186/s12917-021-02842-9spa
dc.relation.references. Aguilar F, Álvarez C. MASTITIS BOVINA [Internet]. Edu.ec. [cited 2022 May 19]. Available from: http://repositorio.utmachala.edu.ec/bitstream/48000/15205/1/MASTITIS-BOVINA.pdfspa
dc.relation.referencesMera R, Muñoz M, Artieda J, Ortiz P, González R, Vega V. Mastitis bovina y su repercusión en la calidad de la leche [Internet]. Redalyc.org. [citado el 19 de mayo de 2022]. Disponible en: https://www.redalyc.org/pdf/636/63653574004.pdfspa
dc.relation.referencesArenas NE, Moreno Melo V. Producción pecuaria y emergencia de antibiótico resistencia en Colombia: Revisión sistemática. Infectio [Internet]. 2018 [citado 2022 May 19];22(2):110 Disponible en: http://www.scielo.org.co/pdf/inf/v22n2/0123-9392-inf-22- 02-00110.pdfspa
dc.relation.referencesRuegg PL. The bovine milk microbiome - an evolving science. Domest Anim Endocrinol [Internet]. 2022;79(106708):106708. Disponible en: http://dx.doi.org/10.1016/j.domaniend.2021.106708spa
dc.relation.referencesDerakhshani H, Plaizier J, De Buck J, Barkema H, Khafipour E. Composition and cooccurrence patterns of the microbiota of different niches of the bovine mammary gland: potential associations with mastitis susceptibility, udder inflammation, and teat-end hyperkeratosis. Anim Microbiome [Internet]. 2020;2(1):11. Disponible en: http://dx.doi.org/10.1186/s42523-020-00028-6spa
dc.relation.referencesOikonomou G, Addis MF, Chassard C, Nader-Macias MEF, Grant I, Delbès C, et al. Milk Microbiota: What are we exactly talking about? Front Microbiol [Internet]. 2020;11:60. Disponible en: http://dx.doi.org/10.3389/fmicb.2020.00060spa
dc.relation.referencesMetzger SA, Hernandez LL, Skarlupka JH, Walker TM, Suen G, Ruegg PL. A cohort study of the milk Microbiota of healthy and inflamed bovine mammary glands from dry off through 150 days in milk. Front Vet Sci [Internet]. 2018;5:247. Disponible en: http://dx.doi.org/10.3389/fvets.2018.00247spa
dc.relation.referencesGuzmán, D. [Internet] 2015. [Citado el 14 de agosto de 2022]. Disponible en: http://repository.unilasallista.edu.co/dspace/bitstream/10567/1730/1/Factores_inherentes_ presentacion_mastitis_bovina.pdfspa
dc.relation.referencesSeroussi E, Blum S, Krifucks O, Lavon Y, Leitner G. Application of pancreatic phospholipase A2 for treatment of bovine mastitis. PLoS One [Internet]. 2018 [citado el 5 de septiembre de 2022];13(8):e0203132. Disponible en: http://dx.doi.org/10.1371/journal.pone.0203132spa
dc.relation.referencesSordillo LM. Mammary Gland Immunobiology and Resistance to Mastitis. [Internet]. 2018. [Citado 26 sep 2021]; 34: 507–523. Disponible en: https://doi.org/10.1016/j.cvfa.2018.07.005spa
dc.relation.referencesDai H, Wei G, Wang Y, Ma N, Chang G, Shen X. Sodium butyrate promotes lipopolysaccharide-induced innate immune responses by enhancing mitogen-activated protein kinase activation and histone acetylation in bovine mammary epithelial cells. [Internet] 2020. [Citado 14 ago 2022]. Journalofdairyscience.org. Disponible en: https://doi.org/10.3168/jds.2020-18198spa
dc.relation.referencesZhao C, Jiang P, He Z, Yuan X, Guo J, Li Y, et al. Dimethyl itaconate protects against lippolysacchride-induced mastitis in mice by activating MAPKs and Nrf2 and inhibiting NF-κB signaling pathways. [Internet] 2019. [Citado 14 ago 2022]. Microbial Pathogenesis. Disponible en: https://doi.org/10.1016/j.micpath.2019.05.024spa
dc.relation.referencesZhan K, Yang T, Feng B, Zhu X, Chen Y, Huo Y, et al. The protective roles of tea tree oil extracts in bovine mammary epithelial cells and polymorphonuclear leukocytes. J Anim Sci Biotechnol [Internet]. 2020;11(1):62. Available from: http://dx.doi.org/10.1186/s40104-020-00468-9spa
dc.relation.referencesMAMICEL 500 ML [Internet]. Proymaganadera.com. [citado el 11 de septiembre de 2022]. Disponible en: https://www.proymaganadera.com/producto/mamicel-500-mlspa
dc.relation.referencesMushtaq S, Manzoor A, Shah A, Ahmad S, Hussain A, Parvaiz Q, et al. Bovine mastitis: An appraisal of its alternative herbal cure. Microb Pathog [Internet]. 2018 [citado el 5 de septiembre de 2022];114:357–61. Disponible en: http://dx.doi.org/10.1016/j.micpath.2017.12.024spa
dc.relation.referencesSerunkuma P, McGaw LJ, Nsahlai IV, Van Staden J. Selected southern African medicinal plants with low cytotoxicity and good activity against bovine mastitis pathogens. [Internet]. 2017. [Citado el 06 nov 2021]; 111:242-247. Disponible en: https://doi.org/10.1016/j.sajb.2017.03.032spa
dc.relation.referencesNisrin OA, Mona ME, Marwa EA, Fatma AE. Evaluation of antimicrobial effect of Acacia nilotica plant extract and selected commercial disinfectants against some pathogens causing mastitis. Mansoura Veterinary Medical Journal [Internet] 21:4 (2020) 193-200. Available from: https://mvmj.journals.ekb.eg=article_148733_b80e85891cfbeb3a49f7c4cc32a8a1be.pdfspa
dc.relation.referencesSilva T, Scalabrin P, Oliveira A, Antunes F, Silveira S, Streck A. Use of plant extracts and essential oils in the control of bovine mastitis. Res Vet Sci [Internet]. 2020 [citado el 5 de septiembre de 2022];131:186–93. Disponible en: http://dx.doi.org/10.1016/j.rvsc.2020.04.025spa
dc.relation.referencesMontironi I, Cariddi L, Reinoso E. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis. Rev Argent Microbiol [Internet]. 2016 [citado el 5 de septiembre de 2022];48(3):210–6. Disponible en: http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0325- 75412016000300007&lng=es&nrm=isospa
dc.relation.referencesMullen K, Lee A, Lyman R, Mason S, Washburn S, Anderson K. Short communication: an in vitro assessment of the antibacterial activity of plant-derived oils. J Dairy Sci [Internet]. 2014 [citado el 5 de septiembre de 2022];97(9):5587–91. Disponible en: http://dx.doi.org/10.3168/jds.2013-7806spa
dc.relation.referencesMoreira G, Matsumoto L, Silva R, Domingues P, Mello E. Atividade antibacteriana do extrato hidroalcoólico de Punica granatum Linn. sobre Staphylococcus spp. isolados de leite bovino. Pesqui Vet Bras [Internet]. 2014 [citado el 5 de septiembre de 2022];34(7):626–32. Disponible en: https://www.scielo.br/j/pvb/a/gDpRBxQr7GbnmR8NdNFSfXj/abstract/?lang=ptspa
dc.relation.referencesAmber R, Adnan M, Tariq A, Khan SN, Mussarat S, Hashem A, et al. Antibacterial activity of selected medicinal plants of northwest Pakistan traditionally used against mastitis in livestock. Saudi J Biol Sci [Internet]. 2018;25(1):154–61. Disponible en: http://dx.doi.org/10.1016/j.sjbs.2017.02.008spa
dc.relation.referencesZeedan GSG, Abdalhamed AM, Abdeen E, Ottai ME, Abdel-Shafy S. Evaluation of antibacterial effect of some Sinai medicinal plant extracts on bacteria isolated from bovine mastitis. Vet World [Internet]. 2014;7(11):991–8. Available from: http://dx.doi.org/10.14202/vetworld.2014.991-998spa
dc.relation.references. Castro KN de C, Lima DF, Vasconcelos LC, Santos RC, Pereira AML, Fogaça FH dos S, et al. Composição química e eficácia do óleo essencial e do extrato etanólico de Alpinia zerumbet sobre Staphylococcus aureus. Arq Inst Biol (Sao Paulo) [Internet]. 2016;83(0). Disponible en: http://dx.doi.org/10.1590/1808-1657000192014spa
dc.relation.referencesChen X, Gao M, Liang D, Yin S, Yao K, Zhang Y. Safety assessment of genetically modified milk containing human beta-defensin-3 on rats by a 90-day feeding study. Food Chem Toxicol [Internet]. 2017;100:34–41. Disponible en: https://www.sciencedirect.com/science/article/pii/S0278691516304653spa
dc.relation.referencesKalińska A, Jaworski S, Wierzbicki M, Gołębiewski M. Silver and copper nanoparticlesan alternative in future mastitis treatment and prevention? Int J Mol Sci [Internet]. 2019;20(7):1672. Disponible en: http://dx.doi.org/10.3390/ijms20071672spa
dc.relation.referencesZhang H-M, Jiang H-R, Chen D-J, Shen Z-L, Mao Y-J, Liang Y-S, et al. Evaluation of a povidone-iodine and chitosan-based barrier teat dip in the prevention of mastitis in dairy cows. J Integr Agric [Internet]. 2021;20(6):1615–25. Available from: http://dx.doi.org/10.1016/s2095-3119(20)63418-9spa
dc.relation.referencesBreser ML, Felipe V, Bohl LP, Orellano MS, Isaac P, Conesa A, et al. Chitosan and cloxacillin combination improve antibiotic efficacy against different lifestyle of coagulase-negative Staphylococcus isolates from chronic bovine mastitis. Sci Rep [Internet]. 2018;8(1). Available from: http://dx.doi.org/10.1038/s41598-018-23521-0spa
dc.relation.referencesOrellano MS, Isaac P, Breser ML, Bohl LP, Conesa A, Falcone RD, et al. Chitosan nanoparticles enhance the antibacterial activity of the native polymer against bovine mastitis pathogens. Carbohydr Polym [Internet]. 2019;213:1–9. Available from: http://dx.doi.org/10.1016/j.carbpol.2019.02.016spa
dc.relation.referencesRegev G, Martins J, Sheridan MP, Leemhuis J, Thompson J, Miller C. Feasibility and preliminary safety of nitric oxide releasing solution as a treatment for bovine mastitis. Res Vet Sci [Internet]. 2018;118:247–53. Disponible en: http://dx.doi.org/10.1016/j.rvsc.2018.02.009spa
dc.relation.referencesMoreira LH, de Souza JCP, de Lima CJ, Salgado MAC, Fernandes AB, Andreani DIK, et al. Use of photodynamic therapy in the treatment of bovine subclinical mastitis. Photodiagnosis Photodyn Ther [Internet]. 2018;21:246–51. Disponible en: http://dx.doi.org/10.1016/j.pdpdt.2017.12.009spa
dc.relation.referencesLopes TS, Fontoura PS, Oliveira A, Rizzo FA, Silveira S, Streck AF. Use of plant extracts and essential oils in the control of bovine mastitis. [Internet] 2020. [Cited 06 nov 2021];131:186-193. Available in: https://doi.org/10.1016/j.rvsc.2020.04.025spa
dc.relation.referencesFelipe V, Breser ML, Bohl LP, Rodrigues da Silva E, Morgante CA, Correa SG, et al. Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. [Internet] 2019 [Citado 06 nov 2021]; 01;126:60- 67. Disponible en: https://doi.org/10.1016/j.ijbiomac.2018.12.159spa
dc.relation.referencesSun X, Luo S, Jiang C, Tang Y, Cao Z, Jia H, et al. Sodium butyrate reduces bovine mammary epithelial cell inflammatory responses induced by exogenous lipopolysaccharide, by inactivating NF-κB signaling. J Dairy Sci [Internet]. 2020;103(9):8388–97. Disponible en: http://dx.doi.org/10.3168/jds.2020-18189spa
dc.relation.referencesFernandes P, Alves T, Barbosa R, Pimentel N, Natalino J, Cuquetto H, et al. Subinhibitory concentrations of silver nanoparticles and silver nitrate on the adaptative and cross-resistance to antibiotics on bovine mastitis pathogens. Cienc Rural [Internet]. 2021 [citado el 5 de septiembre de 2022];51(12). Disponible en: https://www.scielo.br/j/cr/a/HWKk9Nmc7VJj7dbfhkRfzcN/abstract/?lang=enspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalMastitis bovinaspa
dc.subject.proposalAntibioticosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2022