Mostrar el registro sencillo del ítem

dc.contributor.advisorLópez López, Yalile Ibeth
dc.contributor.authorAlejo Marín, Laura Yulieth
dc.contributor.authorAvendaño Pira, Claudia Marily
dc.date.accessioned2024-05-20T16:31:10Z
dc.date.available2024-05-20T16:31:10Z
dc.date.issued2022-11
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/6871
dc.description.abstractLa tecnología ha avanzado hasta el surgimiento del láser y su variedad de aplicaciones en medicina, entre ellas por ejemplo, potenciando procesos de cicatrización y mejoramiento de condiciones crónicas en patologías y su sintomatología como el manejo del dolor intenso. También ha resultado ser una herramienta muy útil a nivel quirúrgico, ya que con este se pueden realizar procedimientos importantes sin ser tan invasivos con los tejidos u órganos; esto genera ventajas en el proceso quirúrgico y postquirúrgico (1- 6, 121). Sumado a esto, la ciencia en pro del avance por obtener células madre (CM), ha evolucionado al punto de usar no solo el aspirado de médula ósea o del cordón umbilical; sino además usar otros tejidos de adulto como: dental (entre ellos la pulpa dental de dientes sin erupcionar), adiposo de la parte abdominal e incluso de la sangre venosa que ha sido estimulada a nivel de la médula ósea usando factores estimulantes de colonias granulocíticas (8, 13, 16, 18, 27, 43). Es así como en esta investigación se pretende realizar una revisión bibliográfica para evaluar el avance de la tecnología láser enfocada al uso en tratamientos con células madre, la manera en que potencia el crecimiento celular, las ventajas y desventajas de su aplicación y los antecedentes a nivel medicinal que se han registrado hasta la actualidad (1-124).spa
dc.description.tableofcontentsContenido RESUMEN 9 1. INTRODUCCIÓN 10 2. PROBLEMA DE INVESTIGACIÓN 12 2.1 Justificación 13 3. OBJETIVO 14 3.1 Objetivo general 14 3.2 Objetivos específicos 14 4. MARCO TEÓRICO 15 4.1 Antecedentes. 15 4.2 Células madre o totipotenciales 21 4.3 Obtención Células madre: 23 4.4 Tecnología láser 24 4.5 Protocolo de tratamiento de células madre con uso de irradiación láser 27 4.5.1 Historia clínica, anamnesis, análisis de la lesión o patología a tratar, investigación del caso clínico. 28 4.5.2 Planificación y organización del protocolo adecuado para el tratamiento efectivo de la lesión o patología a tratar 28 4.5.3 Extracción de muestra para obtención de células madre adultas (adiposas, dentales o hematopoyéticas) 29 4.5.4 Almacenamiento y procesamiento de la muestra para la obtención de las células madre. 30 4.5.5 Cultivo y proliferación de células madre 30 4.5.6 Inserción o inyección de células madre listas para su acción en el tejido a reparar 31 4.6 Seguimiento y vigilancia del tejido o lesión tratada con células madre, controles con tecnología láser para el rendimiento de la regeneración celular. 32 4.7 Resultados obtenidos y aproximaciones a tratamientos no evaluados 33 5. DISEÑO METODOLÓGICO 34 5.1 Tipo de investigación y alcance 34 5.2 Universo y población 35 5.3 Muestra 35 5.4 Criterios de elegibilidad 36 5.4.1 criterios de inclusión 36 5.4.2 criterios de exclusión 36 5.5 Metodología 37 6. RESULTADOS 38 6.1 Información sobre tecnología láser 39 6.2 Información sobre aplicaciones de terapia regenerativa con células madre 41 6.3 Información sobre tecnología láser aplicada en tratamientos de células madre 42 7. DISCUSIÓN 44 8. CONCLUSIONES 48 CÉLULAS MADRE Y LÁSER, LAURA ALEJO - MARILY AVENDAÑO 6 9. RECOMENDACIONES 52 10. BIBLIOGRAFÍA 53 11. Anexos 59spa
dc.format.extent93p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.titleAplicaciones de luz láser en regeneración de tejidos con células madre en humanos, sus ventajas y desventajasspa
dc.typeTrabajo de grado - Pregradospa
dc.contributor.corporatenameUniversidad Colegio Mayor de Cundinamarcaspa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.Cspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesHuang SF, Tsai YA, Wu SB, Wei YH, Tsai PY, Chuang TY. Effects of intravascular laser irradiation of blood in mitochondria dysfunction and oxidative stress in adults with chronic spinal cord injury. Photomedicine and laser surgery. 2012;30(10):579-86.spa
dc.relation.referencesMesquita-Ferrari RA, Alves AN, de Oliveira Cardoso V, Artilheiro PP, Bussadori SK, Rocha LA, et al. Low-level laser irradiation modulates cell viability and creatine kinase activity in C2C12 muscle cells during the differentiation process. Lasers in medical science. 2015;30:2209-13.spa
dc.relation.referencesWu Y he, Wang J, Gong D xu, Gu H yong, Hu S shou, Zhang H. Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers in medical science. 2012;27:509-19.spa
dc.relation.referencesGholami L, Hendi SS, Saidijam M, Mahmoudi R, Tarzemany R, Arkian A, et al. Nearinfrared 940-nm diode laser photobiomodulation of inflamed periodontal ligament stem cells. Lasers in Medical Science. 2022;1-11.spa
dc.relation.referencesZaccara IM, Ginani F, Mota-Filho HG, Henriques ÁCG, Barboza CAG. Effect of lowlevel laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers in medical science. 2015;30:2259-64.spa
dc.relation.referencesFekrazad R, Asefi S, Allahdadi M, Kalhori KA. Effect of photobiomodulation on mesenchymal stem cells. Photomedicine and laser surgery. 2016;34(11):533-42.spa
dc.relation.referencesCrous A, Abrahamse H. Low-intensity laser irradiation at 636 nm induces increased viability and proliferation in isolated lung cancer stem cells. Photomedicine and laser surgery. 2016;34(11):525-32.spa
dc.relation.referencesMvula B, Moore T, Abrahamse H. Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers in Medical Science. 2010;25:33-9.spa
dc.relation.referencesVillalón HI, Pottiez O, Vieyra AG. El camino hacia la luz láser. EDUCATION. 2018;64(2018):100-7.spa
dc.relation.referencesMakropoulou M, Kareliotis G, Spyratou E, Drakaki E, Serafetinides A, Efstathopoulos E. Non-ionizing, laser radiation in Theranostics: The need for dosimetry and the role of Medical Physics. Physica Medica. 2019;63:7-18.spa
dc.relation.referencesCondori-Diburga H. Láser en dermatología. Revista Peruana de Dermatología. 2002;12(2).spa
dc.relation.referencesGonzalez JG, Alarcón ER. « Laser» en medicina y cirugia. Medicina. 1985;7(3):41-8.spa
dc.relation.referencesGonzález GM, Sanchez DJ, Sosa CA. Terapia celular con células madre y medicina regenerativa. Sociedad Internacional de Terapia Celular con Células Madre, Medicina Regenerativa y Antienvejecimiento, S. C. Editorial Alfil. 2009spa
dc.relation.referencesKofler B, Romani A, Pritz C, Steinbichler TB, Schartinger VH, Riechelmann H, et al. Photodynamic effect of methylene blue and low level laser radiation in head and neck squamous cell carcinoma cell lines. International journal of molecular sciences. 2018;19(4):1107.spa
dc.relation.referencesSoleimani M, Abbasnia E, Fathi M, Sahraei H, Fathi Y, Kaka G. The effects of lowlevel laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers in medical science. 2012;27:423-30.spa
dc.relation.referencesKaric V, Chandran R, Abrahamse H. 940 nm diode laser induced differentiation of human adipose derived stem cells to temporomandibular joint disc cells. BMC biotechnology. 2022;22(1):1-12.spa
dc.relation.referencesNascimento RXD, Callera F. Low-level laser therapy at different energy densities (0.1– 2.0 J/cm2) and its effects on the capacity of human long-term cryopreserved peripheral blood progenitor cells for the growth of colony-forming units. Photomedicine and Laser Therapy. 2006;24(5):601-4.spa
dc.relation.referencesDaigo Y, Daigo E, Fukuoka H, Fukuoka N, Ishikawa M, Takahashi K. Wound healing and cell dynamics including mesenchymal and dental pulp stem cells induced by photobiomodulation therapy: an example of socket-preserving effects after tooth extraction in rats and a literature review. International Journal of Molecular Sciences. 2020;21(18):6850.spa
dc.relation.referencesEduardo F de P, Bueno DF, de Freitas PM, Marques MM, Passos‐Bueno MR, Eduardo C de P, et al. Stem cell proliferation under low intensity laser irradiation: a preliminary study. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. 2008;40(6):433-8.spa
dc.relation.referencesNaguib E, Kamel A, Fekry O, Abdelfattah G. Comparative study on the effect of low intensity laser and growth factors on stem cells used in experimentally-induced liver fibrosis in mice. Arab journal of gastroenterology. 2017;18(2):87-97.spa
dc.relation.referencesWeber MH, Fußgänger-May T, Wolf T. Intravenous Laser Blood Irradiation— Introduction of a New Therapy. Deutsche Zeitschrift für Akupunktur. 2007;50:12-23.spa
dc.relation.referencesWu HPP, Persinger MA. Increased mobility and stem-cell proliferation rate in Dugesia tigrina induced by 880 nm light emitting diode. Journal of Photochemistry and Photobiology B: Biology. 2011;102(2):156-60.spa
dc.relation.referencesZaccara IM, Mestieri LB, Pilar EF, Moreira MS, Grecca FS, Martins MD, et al. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers in Medical Science. 2020;35:741- 9.spa
dc.relation.referencesFekrazad R, Ghuchani MS, Eslaminejad M, Taghiyar L, Kalhori K, Pedram M, et al. The effects of combined low level laser therapy and mesenchymal stem cells on bone regeneration in rabbit calvarial defects. Journal of Photochemistry and Photobiology B: Biology. 2015;151:180-5.spa
dc.relation.referencesde Souza SC, Munin E, Alves LP, Salgado MAC, Pacheco MTT. Low power laser radiation at 685 nm stimulates stem-cell proliferation rate in Dugesia tigrina during regeneration. Journal of Photochemistry and Photobiology B: Biology. 2005;80(3):203-7.spa
dc.relation.referencesMunévar Niño JC, Becerra Calixto A del P, Bermúdez Olaya C. Aspectos celulares y moleculares de las células madres involucrados en la regeneración de tejidos con aplicaciones en la práctica clínica odontológica. Acta Odontológica Venezolana. 2008;46(3):361-9.spa
dc.relation.referencesHernández Ramírez P. Medicina regenerativa y células madre. Mecanismos de acción de las células madre adultas. Revista Cubana de Hematología, Inmunología y Hemoterapia. 2009;25(1):0-0.spa
dc.relation.referencesHou J, Zhang H, Yuan X, Li J, Wei Y, Hu S. In vitro effects of low‐level laser irradiation for bone marrow mesenchymal stem cells: Proliferation, growth factors secretion and myogenic differentiation. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery. 2008;40(10):726-33.spa
dc.relation.referencesChu GY, Chen YF, Chen HY, Chan MH, Gau CS, Weng SM. Stem cell therapy on skin: mechanisms, recent advances and drug reviewing issues. Journal of food and drug analysis. 2018;26(1):14-20.spa
dc.relation.referencesMautner K, Blazuk J. Where do injectable stem cell treatments apply in treatment of muscle, tendon, and ligament injuries? PM&R. 2015;7(4):S33-40.spa
dc.relation.referencesde Villiers JA, Houreld NN, Abrahamse H. Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Reviews and Reports. 2011;7:869-82.spa
dc.relation.referencesMata-Miranda M, Vázquez-Zapién GJ, Sánchez-Monroy V. Generalidades y aplicaciones de las células madre. Perinatología y reproducción humana. 2013;27(3):194-9.spa
dc.relation.referencesDosne Pasqualini C. Células madre: Lo que sabemos. Presente y futuro. MEDICINA (Buenos Aires). 2010;70(6):586-586.spa
dc.relation.referencesYang D, Yi W, Wang E, Wang M. Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Scientific reports. 2016;6(1):1-7.spa
dc.relation.referencesSerna-Cuéllar E, Santamaría-Solís L. Protocolo de extracción y procesamiento de células madre adultas del tejido adiposo abdominal: coordenadas del cirujano plástico en la investigación traslacional. Cirugía plástica ibero-latinoamericana. 2013;39:s44-50.spa
dc.relation.referencesJaguar G, Prado J, Nishimoto IN, Pinheiro M, de Castro Jr D, da Cruz Perez D, et al. Low‐energy laser therapy for prevention of oral mucositis in hematopoietic stem cell transplantation. Oral diseases. 2007;13(6):538-43.spa
dc.relation.referencesFerreira LS, Diniz IMA, Maranduba C, Miyagi S, Rodrigues M, Moura-Netto C, et al. Short-term evaluation of photobiomodulation therapy on the proliferation and undifferentiated status of dental pulp stem cells. Lasers in medical science. 2019;34:659-66.spa
dc.relation.referencesWason SE, Monfared S, Ionson A, Klett DE, Leslie SW. Ureteroscopy. 2020;spa
dc.relation.referencesBhatta AK, Keyal U, Wang X, Gellén E. A review of the mechanism of action of lasers and photodynamic therapy for onychomycosis. Lasers in medical science. 2017;32:469-74.spa
dc.relation.referencesLagos A. Células madre y sistemas de clonación celular y sus posibles aplicaciones en odontología. 2004.spa
dc.relation.referencesAlGhamdi KM, Kumar A, Moussa NA. Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers in medical science. 2012;27:237- 49.spa
dc.relation.referencesVale KL do, Maria DA, Picoli LC, Deana AM, Mascaro MB, Ferrari RAM, et al. The effects of photobiomodulation delivered by light-emitting diode on stem cells from human exfoliated deciduous teeth: a study on the relevance to pluripotent stem cell viability and proliferation. Photomedicine and laser surgery. 2017;35(12):659-65.spa
dc.relation.referencesCastro B. Aplicaciones clínicas de las células madre del tejido adiposo. Cirugía Plástica Ibero-Latinoamericana. 2013;39:s29-32.spa
dc.relation.referencesSarveazad A, Babahajian A, Yari A, Rayner CK, Mokhtare M, Babaei-Ghazani A, et al. Combination of laser and human adipose-derived stem cells in repair of rabbit anal sphincter injury: a new therapeutic approach. Stem Cell Research & Therapy. 2019;10(1):1-15.spa
dc.relation.referencesAmid R, Kadkhodazadeh M, Sarshari MG, Parhizkar A, Mojahedi M. Effects of two protocols of low-level laser therapy on the proliferation and differentiation of human dental pulp stem cells on sandblasted titanium discs: an in vitro study. Journal of Lasers in Medical Sciences. 2022;13.spa
dc.relation.referencesYurtsever MÇ, Kiremitci A, Gümüşderelioğlu M. Dopaminergic induction of human dental pulp stem cells by photobiomodulation: comparison of 660nm laser light and polychromatic light in the nir. Journal of Photochemistry and Photobiology B: Biology. 2020;204:111742.spa
dc.relation.referencesBorzabadi-Farahani A. Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. Journal of Photochemistry and Photobiology B: Biology. 2016;162:577-82.spa
dc.relation.referencesMirhosseini M, Shiari R, Motlagh PE, Farivar S. Cerebrospinal fluid and photobiomodulation effects on neural gene expression in dental pulp stem cells. Journal of Lasers in Medical Sciences. 2019;10(Suppl 1):S30.spa
dc.relation.referencesÇil N, Yaka M, Ünal MS, Dodurga Y, Tan S, Seçme M, et al. Adipose derived mesenchymal stem cell treatment in experimental asherman syndrome induced rats. Molecular Biology Reports. 2020;47:4541-52.spa
dc.relation.referencesGinani F, Soares DM, de Oliveira Rocha HA, de Souza LB, Barboza CAG. Low-level laser irradiation induces in vitro proliferation of stem cells from human exfoliated deciduous teeth. Lasers in Medical Science. 2018;33:95-102.spa
dc.relation.referencesTabatabaei FS, Torshabi M, Nasab MM, Khosraviani K, Khojasteh A. Effect of lowlevel diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Physics. 2015;25(9):095602.spa
dc.relation.referencesReis CHB, Buchaim DV, Ortiz A de C, Fideles SOM, Dias JA, Miglino MA, et al. Application of fibrin associated with photobiomodulation as a promising strategy to improve regeneration in tissue engineering: A systematic review. Polymers. 2022;14(15):3150.spa
dc.relation.referencesGuo J, Wang Q, Wai D, Zhang Q, Shi S, Le AD, et al. Visible red and infrared light alters gene expression in human marrow stromal fibroblast cells. Orthodontics & craniofacial research. 2015;18:50-61.spa
dc.relation.referencesAmaroli A, Agas D, Laus F, Cuteri V, Hanna R, Sabbieti MG, et al. The effects of photobiomodulation of 808 nm diode laser therapy at higher fluence on the in vitro osteogenic differentiation of bone marrow stromal cells. Frontiers in physiology. 2018;9:123.spa
dc.relation.referencesRen C, McGrath C, Yang Y. The effectiveness of low-level diode laser therapy on orthodontic pain management: a systematic review and meta-analysis. Lasers in medical science. 2015;30:1881-93.spa
dc.relation.referencesSilveira GRC, de Lima DC, Cintra LTÂ, Brigagão MRPL, Ervolino E, Fernandes LA. Influence of Doxycycline and InGaAlP Diode Laser at 660 nm Wavelength in the Treatment of Periodontitis Induced in Rats: In Vivo Study. Photochemistry and Photobiology. 2021;97(5):1104-15.spa
dc.relation.referencesSgolastra F, Severino M, Gatto R, Monaco A. Effectiveness of diode laser as adjunctive therapy to scaling root planning in the treatment of chronic periodontitis: a meta-analysis. Lasers in medical science. 2013;28:1393-402.spa
dc.relation.referencesMattar H, Bahgat M, Ezzat A, Bahaa El-Din B, Keraa K, El Taftazany I. Management of peri-implantitis using a diode laser (810 nm) vs conventional treatment: a systematic review. Lasers in Medical Science. 2021;36:13-23.spa
dc.relation.referencesSfasciotti GL, Zara F, Vozza I, Carocci V, Ierardo G, Polimeni A. Diode versus CO2 laser therapy in the treatment of high labial frenulum attachment: a pilot randomized, doubleblinded clinical trial. International Journal of Environmental Research and Public Health. 2020;17(21):7708.spa
dc.relation.referencesKarataş E, Arslan H, Topçuoğlu HS, Yılmaz CB, Yeter KY, Ayrancı LB. The effect of diode laser with different parameters on root fracture during irrigation procedure. Artificial Organs. 2016;40(6):604-9.spa
dc.relation.referencesGadzhula NG, Shinkaruk-Dykovytska MM, Cherepakha OL, Goray MA, Horlenko IM. EFFICIENCY OF USING THE DIODE LASER IN THE TREATMENT OF PERIODONTAL INFLAMMATORY DISEASES 841. Wiadomosci Lekarskie. 2020;73(5).spa
dc.relation.referencesPourshahidi S, Ebrahimi H, Mansourian A, Mousavi Y, Kharazifard M. Comparison of Er, Cr: YSGG and diode laser effects on dentin hypersensitivity: a split-mouth randomized clinical trial. Clinical oral investigations. 2019;23:4051-8.spa
dc.relation.referencesBadawi AM, Osman MA. Fractional erbium-doped yttrium aluminum garnet laserassisted drug delivery of hydroquinone in the treatment of melasma. Clinical, cosmetic and investigational dermatology. 2018;13-20.spa
dc.relation.referencesAbdelwahab M, Salah M, Samy N, Rabie A, Farrag A. Effect of topical 5-fluorouracil alone versus its combination with erbium: YAG (2940 nm) laser in treatment of vitiligo. Clinical, Cosmetic and Investigational Dermatology. 2020;77-85.spa
dc.relation.referencesCerrati EW, O TM, Chung H, Waner M. Diode laser for the treatment of telangiectasias following hemangioma involution. Otolaryngology–Head and Neck Surgery. 2015;152(2):239-43.spa
dc.relation.referencesKoren A, Isman G, Friedman O, Salameh F, Niv R, Shehadeh W, et al. Evaluation of subject response following treatment for pigmentation or wrinkles using a diode laser. Journal of cosmetic dermatology. 2020;19(6):1371-6.spa
dc.relation.referencesKlein A, Bäumler W, Koller M, Shafirstein G, Kohl EA, Landthaler M, et al. Indocyanine green‐augmented diode laser therapy of telangiectatic leg veins: A randomized controlled proof‐of‐concept trial. Lasers in surgery and medicine. 2012;44(5):369-76.spa
dc.relation.referencesSandhu S, Damji KF. Laser management of glaucoma in exfoliation syndrome. Journal of Glaucoma. 2018;27:S91-4.spa
dc.relation.referencesOrdahan B, Karahan A yavuz. Role of low-level laser therapy added to facial expression exercises in patients with idiopathic facial (Bell’s) palsy. Lasers in medical science. 2017;32(4):931-6.spa
dc.relation.referencesJiang C, Klassen H, Zhang X, Young M. Laser injury promotes migration and integration of retinal progenitor cells into host retina. Molecular vision. 2010;16:983.spa
dc.relation.referencesTuby H, Maltz L, Oron U. Induction of autologous mesenchymal stem cells in the bone marrow by low‐level laser therapy has profound beneficial effects on the infarcted rat heart. Lasers in surgery and medicine. 2011;43(5):401-9.spa
dc.relation.referencesPolese L, La Raja C, Fasolato S, Frigo AC, Angeli P, Merigliano S. Endoscopic diode laser therapy for gastric hyperplastic polyps in cirrhotic patients. Lasers in medical science. 2021;36:975-9.spa
dc.relation.referencesBajaj Y, Pegg D, Gunasekaran S, Knight L. Diode laser for paediatric airway procedures: a useful tool. International journal of clinical practice. 2010;64(1):51-4.spa
dc.relation.referencesFischer M, Horn IS, Quante M, Merkenschlager A, Schnoor J, Kaisers UX, et al. Respiratory complications after diode-laser-assisted tonsillotomy. European Archives of Oto- Rhino-Laryngology. 2014;271:2317-24.spa
dc.relation.referencesPinto C, Queirós T, Ferreira C. Transcanalicular Diode Laser-Assisted Dacryocystorhinostomy–Success Rates and Related Factors During 3 Years of Follow-Up. En Taylor & Francis; 2021. p. 501-6.spa
dc.relation.referencesDogan R, Meric A, Ozsütcü M, Yenigun A. Diode laser-assisted endoscopic dacryocystorhinostomy: a comparison of three different combinations of adjunctive procedures. European Archives of Oto-Rhino-Laryngology. 2013;270:2255-61.spa
dc.relation.referencesDawood MS, Salman SD. Low level diode laser accelerates wound healing. Lasers in medical science. 2013;28:941-5.spa
dc.relation.referencesKobayashi T, Seki N, Song YH, Dejima T. GreenLight HPS laser 120 W vs diode laser 300 W vaporization of the prostate for the treatment of benign prostatic hyperplasia in Japanese patients: A prospective, single‐center, randomized clinical trial. LUTS: Lower Urinary Tract Symptoms. 2021;13(1):31-7.spa
dc.relation.referencesGold MH, Biron J, Sensing W. Evaluation of a new diode laser for the treatment of lower extremity leg veins. Journal of Cosmetic Dermatology. 2019;18(3):773-7.spa
dc.relation.referencesOron A, Efrati S, Doenyas-Barak K, Tuby H, Maltz L, Oron U. Photobiomodulation therapy to autologous bone marrow in humans significantly increases the concentration of circulating stem cells and macrophages: a pilot study. Photobiomodulation, Photomedicine, and Laser Surgery. 2022;40(3):178-82.spa
dc.relation.referencesWollina U, Goldman A. The dual 980‐nm and 1470‐nm diode laser for vascular lesions. Dermatologic Therapy. 2020;33(4):e13558.spa
dc.relation.referencesVila-Arteaga J, Stirbu O, Suriano MM, Vila-Mascarell E. A new technique for diode laser cyclophotocoagulation. Journal of Glaucoma. 2014;23(1):35-6.spa
dc.relation.referencesAlbahlal A, Al Dhibi H, Al Shahwan S, Khandekar R, Edward DP. Sympathetic ophthalmia following diode laser cyclophotocoagulation. British Journal of Ophthalmology. 2014;98(8):1101-6.spa
dc.relation.referencesSerrage HJ, Joanisse S, Cooper PR, Palin W, Hadis M, Darch O, et al. Differential responses of myoblasts and myotubes to photobiomodulation are associated with mitochondrial number. Journal of biophotonics. 2019;12(6):e201800411.spa
dc.relation.referencesSivolella S, Sibillin M, Lupi A, Zanette G, Giraudo C. Diode laser for the treatment of a high flow lip vascular malformation. Minerva Dental and Oral Science. 2021;71(4):248-53.spa
dc.relation.referencesGong J, Park H, Lee J, Seo H, Lee S. Effect of photodynamic therapy on multispecies biofilms, including Streptococcus mutans, Lactobacillus casei, and Candida albicans. Photobiomodulation, Photomedicine, and Laser Surgery. 2019;37(5):282-7.spa
dc.relation.referencesYebes A, Toribio C, Álvarez-Maestro M, Cansino R, Aguilera A, Martínez-Piñeiro L. Laser in prostate cancer. Applicability. Archivos Espanoles de Urologia. 2020;73(8):724-34.spa
dc.relation.referencesGao L, Xu W, Li T, Chen J, Shao A, Yan F, et al. Stem cell therapy: a promising therapeutic method for intracerebral hemorrhage. Cell transplantation. 2018;27(12):1809-24.spa
dc.relation.referencesZhou Y, Shao A, Xu W, Wu H, Deng Y. Advance of stem cell treatment for traumatic brain injury. Frontiers in cellular neuroscience. 2019;13:301.spa
dc.relation.referencesStancioiu F, Papadakis GZ, Lazopoulos G, Spandidos DA, Tsatsakis A, Floroiu M, et al. CD271+ stem cell treatment of patients with chronic stroke. Experimental and Therapeutic Medicine. 2020;20(3):2055-62.spa
dc.relation.referencesShimamura N, Mtsuda N, Ktayama K, Kakuta K, Katagai T, Naraoka M, et al. Stem cell therapies for intracerebral hemorrhages. Current Drug Delivery. 2017;14(6):758-65.spa
dc.relation.referencesDuncan T, Valenzuela M. Alzheimer’s disease, dementia, and stem cell therapy. Stem cell research & therapy. 2017;8:1-9.spa
dc.relation.referencesLiu Z, Cheung HH. Stem cell-based therapies for Parkinson disease. International journal of molecular sciences. 2020;21(21):8060.spa
dc.relation.referencesGrochowski C, Radzikowska E, Maciejewski R. Neural stem cell therapy—Brief review. Clinical Neurology and Neurosurgery. 2018;173:8-14.spa
dc.relation.referencesYamazaki K, Kawabori M, Seki T, Houkin K. Clinical trials of stem cell treatment for spinal cord injury. International Journal of Molecular Sciences. 2020;21(11):3994.spa
dc.relation.referencesShah K. Stem cell-based therapies for tumors in the brain: Are we there yet? Neurooncology. 2016;18(8):1066-78.spa
dc.relation.referencesVeneruso V, Rossi F, Villella A, Bena A, Forloni G, Veglianese P. Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration. Journal of Controlled Release. 2019;300:141-53.spa
dc.relation.referencesProsper F, Herreros J, Alegria E. Stem cells to regenerate cardiac tissue in heart failure. 2003;spa
dc.relation.referencesMüller P, Lemcke H, David R. Stem cell therapy in heart diseases–cell types, mechanisms and improvement strategies. Cellular Physiology and Biochemistry. 2018;48(6):2607-55.spa
dc.relation.referencesGoradel NH, Hour FG, Negahdari B, Malekshahi ZV, Hashemzehi M, Masoudifar A, et al. Stem cell therapy: a new therapeutic option for cardiovascular diseases. Journal of cellular biochemistry. 2018;119(1):95-104.spa
dc.relation.referencesSano T, Ishigami S, Ito T, Sano S. Stem cell therapy in heart disease: limitations and future possibilities. Acta Medica Okayama. 2020;74(3):185-90.spa
dc.relation.referencesTrainini JC, Cichero D, Bustos N. Cardioimplante celular autólogo. Rev Argent Cardiol. 2002;70:137-42.spa
dc.relation.referencesPan G, Mu Y, Hou L, Liu J. Examining the therapeutic potential of various stem cell sources for differentiation into insulin-producing cells to treat diabetes. En Elsevier; 2019. p. 47-53.spa
dc.relation.referencesGaddam S, Periasamy R, Gangaraju R. Adult stem cell therapeutics in diabetic retinopathy. International Journal of Molecular Sciences. 2019;20(19):4876.spa
dc.relation.referencesFernández A, Moreno J, Prósper F, García M, Echeveste J. Regeneración de la superficie ocular: stem cells/células madre y técnicas reconstructivas. En SciELO Espana; 2008. p. 53-69.spa
dc.relation.referencesNourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem cell research & therapy. 2019;10(1):1-20.spa
dc.relation.referencesMead B, Berry M, Logan A, Scott RA, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem cell research. 2015;14(3):243-57.spa
dc.relation.referencesZhu T, Li Y, Guo Y, Zhu C. The development of stem cell-based treatment for liver failure. Current Stem Cell Research & Therapy. 2017;12(7):554-63.spa
dc.relation.referencesDo TK, Nguyen VH, Nguyen TN, Nguyen VL, Pham DM, Nguyen TN, et al. Efficient Isolation and Long-term Red Fluorescent Nanodia-mond Labeling of Umbilical Cord Mesenchymal Stem Cells for the Effective Differentiation into Hepatocyte-like Cells. Brazilian Archives of Biology and Technology. 2020;63.spa
dc.relation.referencesShao A, Tu S, Lu J, Zhang J. Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem cell research & therapy. 2019;10:1-13.spa
dc.relation.referencesVij SC, Sabanegh Jr E, Agarwal A. Biological therapy for non-obstructive azoospermia. Expert opinion on biological therapy. 2018;18(1):19-23.spa
dc.relation.referencesMirza S, Sadiq M, Alqahtani A, Al-Saleh S, Alqutub M, Almubarak A, et al. The effect of 805 nm near-infrared photobiomodulation on proliferation and differentiation of bone marrow stem cells in murine rats. European Review for Medical and Pharmacological Sciences. 2021;25(20):6319-25.spa
dc.relation.referencesLiao X, Li S, Xie G, Xie S, Xiao L, Song J, et al. Preconditioning With Low‐Level Laser Irradiation Enhances the Therapeutic Potential of Human Adipose‐derived Stem Cells in a Mouse Model of Photoaged Skin. Photochemistry and photobiology. 2018;94(4):780-90.spa
dc.relation.referencesWinter R, Dungel P, Reischies FMJ, Rohringer S, Slezak P, Smolle C, et al. Photobiomodulation (PBM) promotes angiogenesis in-vitro and in chick embryo chorioallantoic membrane model. Scientific Reports. 2018;8(1):1-9.spa
dc.relation.referencesMostafavinia A, Dehdehi L, Ghoreishi SK, Hajihossainlou B, Bayat M. Effect of in vivo low-level laser therapy on bone marrow-derived mesenchymal stem cells in ovariectomyinduced osteoporosis of rats. Journal of Photochemistry and Photobiology B: Biology. 2017;175:29-36.spa
dc.relation.referencesPark IS, Mondal A, Chung PS, Ahn JC. Vascular regeneration effect of adipose-derived stem cells with light-emitting diode phototherapy in ischemic tissue. Lasers in medical science. 2015;30:533-41.spa
dc.relation.referencesZhang H, Hou J, Shen Y, Wang W, Wei Y, Hu S. Low level laser irradiation precondition to create friendly milieu of infarcted myocardium and enhance early survival of transplanted bone marrow cells. Journal of Cellular and Molecular Medicine. 2010;14(7):1975- 87.spa
dc.relation.referencesGutiérrez D, Rouabhia M, Ortiz J, Gaviria D, Alfonso C, Muñoz A, et al. Low-level laser irradiation promotes proliferation and differentiation on apical papilla stem cells. Journal of Lasers in Medical Sciences. 2021;12.spa
dc.relation.referencesSilva GBL, Mendonça EF, Bariani C, Antunes HS, Silva MAG. The prevention of induced oral mucositis with low-level laser therapy in bone marrow transplantation patients: a randomized clinical trial. Photomedicine and laser surgery. 2011;29(1):27-31.spa
dc.relation.referencesKim HK, Kim JH, Abbas AA, Kim DO, Park SJ, Chung JY, et al. Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers in medical science. 2009;24:214-22.spa
dc.relation.referencesCayan T, Hasanoğlu Erbaşar GN, Akca G, Kahraman S. Comparative evaluation of diode laser and scalpel surgery in the treatment of inflammatory fibrous hyperplasia: A splitmouth study. Photobiomodulation, photomedicine, and laser surgery. 2019;37(2):91-8.spa
dc.relation.referencesXiao B, Zou Z, Bhandari J, Zhang Y, Yan G. Exposure to diode laser (810nm) affects the bacterial adherence and biofilm formation in a E. faecalis biofilm model. Photodiagnosis and Photodynamic Therapy. 2020;31:101772.spa
dc.relation.referencesKazakova RT, Tomov GT, Kissov CK, Vlahova AP, Zlatev SC, Bachurska SY. Histological gingival assessment after conventional and laser gingivectomy. Folia Med (Plovdiv). 2018;60(4):610-6.spa
dc.relation.referencesBruce C. Human Embryology and Developmental Biology. Elsevier Spain. 2020spa
dc.relation.referenceshttps://www.researchgate.net/publication/266675281_Intravascular_laser_therapy_IVL_i n_pre-hypertension_and_hypertension_patientsspa
dc.relation.referenceshttps://pubmed.ncbi.nlm.nih.gov/23358875/spa
dc.relation.referenceshttp://www.scielo.edu.uy/scielo.php?pid=S1688- 93392021000201207&script=sci_arttextspa
dc.relation.referencesKeeney M, Chin-Yee I, Weir K, Popma J, Nayar R Sutherland D. Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. 1998;34:61-70spa
dc.relation.referencesJara SE, Jensen GE. Recuento de Células CD34 + por citometría de flujo. Revista del Colegio de microbiólogos de Costa Rica 2018;24spa
dc.relation.referencesSuarez de Lezo J, Torres A, Herrera I, Pan M, Romero M, Pavlovic D, Segura J, Ojeda S, Sánchez J, López F, Medina A. Efectos de la movilización de células madre mediante el uso de factor estimulante de colonias granulocíticas en pacientes con infarto agudo de miocardio anterior revascularizado percutáneamente. Revista española de cardiología. 2005; 58(3): 253- 261spa
dc.relation.referencesÁvila L, Ospino B, Franco C, Arroyo F, Ávila J, Pareja L, Aristizábal F. Efectos del uso del factor estimulante de colonias granulocíticas en la obtención de células madre en un grupo de pacientes con enfermedad arterial oclusiva crónica. Revista Colombiana de Ciencias Químico Farmacéuticos 2010; 39(2)spa
dc.relation.referenceshttps://pubmed.ncbi.nlm.nih.gov/37874511/ UANspa
dc.relation.referencesGaviria J, Herreros J, Luquin R, Moreno J, Prósper F, Rábago G, Redondo P, Robles E. Trasplante celular y terapia regenerativa con células madre. Anales del sistema sanitario de Navarra. 2006 ; 29:219-234spa
dc.relation.referencesModificación láser de la sangre in vitro e in vivo en pacientes con enfermedad de Parkinson TV Vitreschak 1, V.V.Mijailov , MA Piradov , VV Poleshchuk , SL Stvolinski , AA Boldyrev. https://pubmed.ncbi.nlm.nih.gov/12910278/spa
dc.relation.referencesEsteve RM. Tejido adiposo: heterogeneidad celular y diversidad funcional. Endocrinología y Nutrición Elsevier España. 2014. 61(2) 100-112spa
dc.relation.referencesZumbado G, Rodríguez M, Rojas X, Rojas C, Herrera H. Recolección de células madre en sangre periférica mediante aféresis de grandes volúmenes. Acta Médica Costarricense. 2014. 6 (2)spa
dc.relation.referencesGrupo Español de Trasplante Hematopoyético y Terapia Celular. Aféresis de células progenitoras hematopoyéticas (CPH). GETH.España. 2019spa
dc.relation.referencesBeléndez C, Cela E, Galardón P. Punción - aspiración de médula ósea. Anales de Pediatría Continuada España. 2007. 5(1):52-4spa
dc.relation.referencesEmCyte Corporation. Técnica quirúrgica Sistema de médula ósea. Exatage biológicos. España. 2012spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)spa
dc.subject.proposalCélulas madrespa
dc.subject.proposalLáserspa
dc.subject.proposalDiodospa
dc.subject.proposalCO2spa
dc.subject.proposalRegeneración celularspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2024