Mostrar el registro sencillo del ítem

dc.contributor.advisorPinillos Medina, Ingred
dc.contributor.advisorBello García, Felio Jesús
dc.contributor.authorNovoa Palomares, Francy Julieth
dc.contributor.authorSalas Díaz, Laura Daniela
dc.coverage.spatialNeotrópico
dc.date.accessioned2021-05-21T21:50:41Z
dc.date.available2021-05-21T21:50:41Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/74
dc.description.abstractEl uso masivo y desregulado de los antibióticos ha contribuido al desarrollo de mecanismos de resistencia bacteriana, lo cual representa una grave amenaza mundial de creciente preocupación en salud pública, por esta razón, la búsqueda de nuevas alternativas constituye una prioridad y un reto para la comunidad científica. Las propiedades antimicrobianas de las excreciones y secreciones (ES) larvales derivadas de moscas necrófagas de la familia Calliphoridae podrían ser una fuente promisoria para estos propósitos. El objetivo del presente estudio fue comparar la actividad antimicrobiana de las ES nativas, ES>10 kDa y las ES<10 kDa, derivadas de Calliphora vicina y Sarconesiopsis magellanica, para esto, se realizó un ensayo de turbidimetría en placa de 96 pozos y se determinó la Concentración Mínima Inhibitoria (CMI) de las ES<10 kDa. Los resultados mostraron que las ESn y las ES<10 kDa tanto de C. vicina como de S. magellanica evidenciaron potente actividad antibacterial contra 3 cepas de Staphylococcus aureus y 4 bacterias Gram negativas, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae y Serratia marcescens, siendo las ES <10kDa más efectivas que las ESn en las dos especies de moscas evaluadas. Además, las ES < 10kDa presentaron la misma efectividad, excepto cuando se evaluaron en el ensayo de CMI, en donde se observó que las ES < 10kDa de S. magellanica fueron más potentes en todas las bacterias evaluadas excepto en la cepa de S. aureus ATCC 25923. Estos resultados representan, potencialmente, una fuente importante para el aislamiento y caracterización de agentes anti-infecciosos y también, podrían constituirse hacia el futuro próximo en fármacos.spa
dc.description.abstractThe massive and deregulated use of antibiotics has contributed to the development of mechanisms of bacterial resistance, which represents a serious global threat of growing public health concern, for this reason, the search for new alternatives is a priority and a challenge for the community. scientific. The antimicrobial properties of larval excretions and secretions (ES) derived from ghoul flies of the Calliphoridae family potentially form a promising source for these purposes. The objective of the present study was to compare the antimicrobial activity of native ES, ES> 10 kDa and ES <10 kDa, derived from Calliphora vicina and Sarconesiopsis magellanica, for this, a 96-well plate turbidimetry test was performed and determined the Minimum Inhibitory Concentration (MIC) of the ES <10 kDa. The results showed that ESn and ES <10 kDa of both C. vicina and S. magellanica showed potent antibacterial activity against 3 Staphylococcus aureus strains and 4 Gram negative bacteria, Escherichia coli, Pseudomonas aeruginosa, Klebsiella Pneumoniae and Serratia marcescens, the ES <10kDa being more effective than the ESn in the two species of flies evaluated. Furthermore, ES <10kDa had the same effectiveness, except when evaluated in the CMI trial, where it was observed that ES <10kDa from S. magellanica were more potent in all bacteria evaluated except for S. aureus ATCC 25923. These results represent, potentially, an important source for the isolation and characterization of anti-infective agents and could also constitute drugs in the near future.eng
dc.format.extent70p.spa
dc.format.mimetypeapplication/pdfspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados-Universidad Colegio Mayor de Cundinamarca, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.titleAnálisis comparativo de la actividad antimicrobiana de secreciones y excreciones larvales de Calliphora vicina y Sarconesiopsis magellanica (Diptera: Calliphoridae)spa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.C.spa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesAAK, A., BIRKEMOE, T., & LEINAAS, H. P. (2011). Phenology and life history of the blowfly Calliphora vicina in stockfish production areas. Entomologia Experimentalis et Applicata, 139(1), 35–46. https://doi.org/10.1111/j.1570-7458.2011.01105.xspa
dc.relation.referencesALNAIMAT, S. M., WAINWRIGHT, M., & ALADAILEH, S. H. (2013). An Initial in Vitro Investigation into the Potential Therapeutic Use of Lucilia Sericata Maggot to Control Superficial Fungal Infections. Jordan Journal of Biological Sciences, 6(2), 137–142. https://doi.org/10.12816/0000271spa
dc.relation.referencesAMAT, E. (2009). Contribución al conocimiento de las Chrysomyinae y Toxotarsinae (Diptera: Calliphoridae) de Colombia. Revista Mexicana de Biodiversidad, 80(1926), 693–708. Retrieved from https://www.academia.edu/342546/Contribución_al_conocimiento_de_las_Chrysomyinae_y_Toxotarsinae_Diptera_Calliphoridae_de_Colombiaspa
dc.relation.referencesAMAT, E., VÉLEZ, M. C., & WOLFF, M. (2008). Illustrated key for identification to genera and species of blowflies (Diptera: Calliphoridae) of Colombia. Caldasia, 30(1), 231–244.spa
dc.relation.referencesARORA, S., BAPTISTA, C., & LIM, C. S. (2011). Maggot metabolites and their combinatory effects with antibiotic on Staphylococcus aureus. Annals of Clinical Microbiology and Antimicrobials, 10(1), 6. https://doi.org/10.1186/1476-0711-10-6spa
dc.relation.referencesAZARIAN, T., MITCHELL, P., GEORGIEVA, M., THOMPSON, C., GHOUILA, A., POLLARD, A., … HANAGE, W. (2018). Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. Global Emergence 26 and Population Dynamics of Divergent Serotype 3 CC180 Pneumococci, 314880. https://doi.org/10.1101/314880spa
dc.relation.referencesBARNES, K. M., GENNARD, D. E., & DIXON, R. A. (2010). An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. Bulletin of Entomological Research, 100(6), 635–640. https://doi.org/10.1017/S000748530999071Xspa
dc.relation.referencesBEXFIELD, A., BOND, A. E., ROBERTS, E. C., DUDLEY, E., NIGAM, Y., THOMAS, S., … RATCLIFFE, N. A. (2008). The antibacterial activity against MRSA strains and other bacteria of a <500 Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes and Infection, 10(4), 325–333. https://doi.org/10.1016/j.micinf.2007.12.011spa
dc.relation.referencesBEXFIELD, A., NIGAM, Y., THOMAS, S., & RATCLIFFE, N. A. (2004). Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes and Infection, 6(14), 1297–1304. https://doi.org/10.1016/j.micinf.2004.08.011spa
dc.relation.referencesCAMACHO, G. (2005). Sucesión de la entomofauna cadavérica y ciclo vital de Calliphora vicina (Diptera: Calliphoridae) como primera especie colonizadora, utilizando cerdo blanco. Revista Colombiana de Entomología, 35–39. Retrieved from https://www.researchgate.net/publication/264552135_Sucesion_de_la_entomofauna_cadaverica_a_partir_de_un_biomodelo_con_visceras_de_resspa
dc.relation.referencesCAZANDER, G., PAWIROREDJO, J. S., VANDENBROUCKE-GRAULS, C. 27 M. J. E., SCHREURS, M. W. J., & JUKEMA, G. N. (2010). Synergism between maggot excretions and antibiotics. Wound Repair and Regeneration, 18(6), 637–642. https://doi.org/10.1111/j.1524-475X.2010.00625.xspa
dc.relation.referencesČEŘOVSKÝ, V., ŽĎÁREK, J., FUČÍK, V., MONINCOVÁ, L., VOBURKA, Z., & BÉM, R. (2010). Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cellular and Molecular Life Sciences, 67(3), 455–466. https://doi.org/10.1007/s00018-009-0194-0spa
dc.relation.referencesCHOUDHARY, V., CHOUDHARY, M., PANDEY, S., CHAUHAN, V. D., & HASNANI, J. J. (2016). Maggot debridement therapy as primary tool to treat chronic wound of animals. Veterinary World, 9(4), 403–409. https://doi.org/10.14202/vetworld.2016.403-409spa
dc.relation.referencesCRUZ-SAAVEDRA, L., DÍAZ-ROA, A., GAONA, M. A., CRUZ, M. L., AYALA, M., CORTÉS-VECINO, J. A., … BELLO, F. J. (2016). The effect of Lucilia sericata- and Sarconesiopsis magellanica-derived larval therapy on Leishmania panamensis. Acta Tropica, (164), 280–289. https://doi.org/10.1016/j.actatropica.2016.09.020spa
dc.relation.referencesDÍAZ-ROA, A., ESPINOZA-CULUPÚ, A., TORRES-GARCÍA, O., BORGES, M. M., AVINO, I. N., ALVES, F. L., … BELLO, F. J. (2019). Sarconesin II, a New Antimicrobial Peptide Isolated from Sarconesiopsis magellanica Excretions and Secretions. Molecules, 24(11), 1–27. https://doi.org/10.3390/molecules24112077spa
dc.relation.referencesDÍAZ-ROA, A., GAONA, M. A., SEGURA, N. A., SUÁREZ, D., PATARROYO, M. A., & BELLO, F. J. (2014). Sarconesiopsis magellanica (Diptera: Calliphoridae) excretions and secretions have potent antibacterial activity. 28 Acta Tropica, 136(1), 37–43. https://doi.org/10.1016/j.actatropica.2014.04.018spa
dc.relation.referencesDÍAZ-ROA, A., PATARROYO, M. A., BELLO, F. J., & DA SILVA, P. I. (2018). Sarconesin: Sarconesiopsis magellanica Blowfly Larval Excretions and Secretions With Antibacterial Properties. Frontiers in Microbiology, 9(September), 1–13. https://doi.org/10.3389/fmicb.2018.02249spa
dc.relation.referencesESPARZA, G. (2020). Bacterias Gram negativas resistentes a carbapenemicos en Colombia : un desafío continuo al sistema de salud. Infectio, 24(2), 55–56. Retrieved from https://www.revistainfectio.org/index.php/infectio/article/view/831/875spa
dc.relation.referencesEVANS, R., DUDLEY, E., & NIGAM, Y. (2015). Detection and partial characterization of antifungal bioactivity from the secretions of the medicinal maggot, Lucilia sericata. Wound Repair and Regeneration, 23(3), 361–368. https://doi.org/10.1111/wrr.12287spa
dc.relation.referencesFISCHER, O. A., MATLOVA, L., DVORSKA, L., SVASTOVA, P., BARTL, J., WESTON, R. T., & PAVLIK, I. (2004). Blowflies Calliphora vicina and Lucilia sericata as passive vectors of Mycobacterium avium subsp. avium, M.a. paratuberculosis and M.a. horminissuis. Medical and Veterinary Entomology, 18(2), 116–122. https://doi.org/10.1111/j.0269-283X.2004.00477.xspa
dc.relation.referencesFRANCESCONIA, F., & LUPI, O. (2012). Myiasis. Clinical Microbiology Reviews, Vol. 25, pp. 79–105. https://doi.org/10.1128/CMR.00010-11spa
dc.relation.referencesGETACHEW, S., GEBRE-MICHAEL, T., ERKO, B., BALKEW, M., & MEDHIN, G. (2007). Non-biting cyclorrhaphan flies (Diptera) as carriers of intestinal human parasites in slum areas of Addis Ababa, Ethiopia. Acta Tropica, 103(3), 186–194. https://doi.org/10.1016/j.actatropica.2007.06.005spa
dc.relation.referencesGHAHFAROKHI, S. H., MOSADEGH, M., AHMADI, A., POURMAND, M. R., AZARSA, M., RAHBAR, M., & NIKMANESH, B. (2020). Serotype distribution and antibiotic susceptibility of streptococcus pneumoniae isolates in Tehran, Iran: A surveillance study. Infection and Drug Resistance, 13, 333–340. https://doi.org/10.2147/IDR.S234295spa
dc.relation.referencesGÓNGORA, J., DÍAZ-ROA, A., GAONA, M. A., CORTÉS-VECINO, J., & BELLO, F. (2015). Evaluación de la actividad antibacterial de los extractos de cuerpos grasos y hemolinfa derivados de la mosca Sarconesiopsis magellanica (Diptera: Calliphoridae). Infectio. https://doi.org/10.1016/j.infect.2014.09.003spa
dc.relation.referencesHASSAN, M. I., AMER, M. S., HAMMAD, K. M., & ZIDAN, M. M. (2016). Antimicrobial activity for excretion and secretion. Journal of the Egyptian Society of Parasitology, 46(1), 179–184.spa
dc.relation.referencesHIRSCH, R., WIESNER, J., MARKER, A., PFEIFER, Y., BAUER, A., HAMMANN, P. E., & VILCINSKAS, A. (2019). Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR Gram-negative bacteria. Journal of Antimicrobial Chemotherapy, 74(1), 96–107. https://doi.org/10.1093/jac/dky386spa
dc.relation.referencesHOROBIN, A. J., SHAKESHEFF, K. M., & PRITCHARD, D. I. (2006). Promotion of human dermal fibroblast migration, matrix remodelling and modification of fibroblast morphology within a novel 3D model by Lucilia sericata larval secretions. Journal of Investigative Dermatology. https://doi.org/10.1038/sj.jid.5700256spa
dc.relation.referencesJANSEN, K. U., KNIRSCH, C., & ANDERSON, A. S. (2018). The role of vaccines in preventing bacterial antimicrobial resistance. Nature Medicine, 30 24(1), 10–20. https://doi.org/10.1038/nm.4465spa
dc.relation.referencesJIANG, K. CHUN, SUN, X. JUAN, WANG, W., LIU, L., CAI, Y., CHEN, Y. CHEN, … WANG, A. PING. (2012). Excretions/Secretions from Bacteria-Pretreated Maggot Are More Effective against Pseudomonas aeruginosa Biofilms. PLoS ONE, 7(11), 22–25. https://doi.org/10.1371/journal.pone.0049815spa
dc.relation.referencesKAHL, M., GÔKÇEN, A., FISCHER, S., BÄUMER, M., WIESNER, J., LOCHNIT, G., … PREISSNER, K. T. (2015). Maggot excretion products from the blowfly Lucilla sericata contain contact phase/intrinsic pathway-like proteases with procoagulant functions. Thrombosis and Haemostasis, 114(2), 277–288. https://doi.org/10.1160/TH14-06-0499spa
dc.relation.referencesKAWABATA, T., MITSUI, H., YOKOTA, K., ISHINO, K., OGUMA, K., & SANO, S. (2010). Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Medical and Veterinary Entomology, 24(4), 375–381. https://doi.org/10.1111/j.1365-2915.2010.00902.xspa
dc.relation.referencesKOSMANN, C., MELLO, R. P. DE, HARTERREITEN-SOUZA, É. S., & PUJOL-LUZ, J. R. (2013). A List of Current Valid Blow Fly Names (Diptera: Calliphoridae) in the Americas South of Mexico with Key to the Brazilian Species. EntomoBrasilis, 6(1), 74–85. https://doi.org/10.12741/ebrasilis.v6i1.266spa
dc.relation.referencesLAVERDE-PAZ, M. J., ECHEVERRY, M. C., PATARROYO, M. A., & BELLO, F. J. (2018). Evaluating the anti-leishmania activity of Lucilia sericata and Sarconesiopsis magellanica blowfly larval excretions/secretions in an in vitro model. Acta Tropica, 177(September 2017), 44–50. 31 https://doi.org/10.1016/j.actatropica.2017.09.033spa
dc.relation.referencesLÓPEZ-CEPEDA, M., & FAGUA, G. (2015). Cambios en composición y abundancia de califóridos de interés forense en Bogotá. Universitas Scientiarum, 20(1), 17–28. https://doi.org/10.11144/Javeriana.SC20-1.ccacspa
dc.relation.referencesMARILUIS, J. C., & MULIERI, P. R. (2003). The distribution of the Calliphoridae in Argentina ( Diptera ). Revista de La Sociedad Entomológica Argentina, 62(1–2), 85–97. Retrieved from https://www.researchgate.net/publication/271215285_The_distribution_of_the_Calliphoridae_in_Argentina_Diptera/downloadspa
dc.relation.referencesMITCHELL, A. M., & MITCHELL, T. J. (2010). Streptococcus pneumoniae: Virulence factors and variation. Clinical Microbiology and Infection, 16(5), 411–418. https://doi.org/10.1111/j.1469-0691.2010.03183.xspa
dc.relation.referencesMOREJÓN GARCÍA, M. (2013). Betalactamasas de espectro extendido. Revista Cubana de Medicina, 52(4), 272–280. Retrieved from http://scielo.sld.cu/pdf/med/v52n4/med06413.pdfspa
dc.relation.referencesMUMCUOGLU, K. Y., MILLER, J., MUMCUOGLU, M., FRIGER, M., & TARSHIS, M. (2009). Destruction of Bacteria in the Digestive Tract of the Maggot of Lucilia sericata (Diptera: Calliphoridae). Journal of Medical Entomology, 38(2), 161–166. https://doi.org/10.1603/0022-2585-38.2.161spa
dc.relation.referencesNIGAM, Y., BEXFIELD, A., THOMAS, S., & RATCLIFFE, N. A. (2006). Maggot Therapy: The Science and Implication for CAM Part II—Maggots Combat Infection. Evidence-Based Complementary and Alternative Medicine, 303–308. https://doi.org/10.1093/ecam/nel022spa
dc.relation.referencesPAPE, T., WOLFF, M., & AMAT, E. C. (2004). Los califóridos, éstridos, rinofóridos y sarcofágidos (Diptera: Calliphoridae, Oestridae, Rhinophoridae, 32 Sarcophagidae) de Colombia. Biota Colombiana.spa
dc.relation.referencesPastar, I., Nusbaum, A. G., Gil, J., Patel, S. B., Chen, J., Valdes, J., … Davis, S. C. (2013). Interactions of Methicillin Resistant Staphylococcus aureus USA300 and Pseudomonas aeruginosa in Polymicrobial Wound Infection. PLoS ONE, 8(2), 1–11. https://doi.org/10.1371/journal.pone.0056846spa
dc.relation.referencesPATARROYO, M. A. (2015). Larval therapy in wound healing | Terapia larval en la curación de heridas. Infectio, 19(1), 19–20. https://doi.org/10.1016/j.infect.2014.12.003spa
dc.relation.referencesPÖPPEL, A. K., KAHL, M., BAUMANN, A., WIESNER, J., GÖKÇEN, A., BECKERT, A., … FRANTA, Z. (2016). A Jonah-like chymotrypsin from the therapeutic maggot Lucilia sericata plays a role in wound debridement and coagulation. Insect Biochemistry and Molecular Biology, 70(2016), 138–147. https://doi.org/10.1016/j.ibmb.2015.11.012spa
dc.relation.referencesRAMON-PARDO, P., SATI, H., & GALAS, M. (2018). “One health” approach in the actions to address antimicrobial resistance from a Latin American standpoint. Revista Peruana de Medicina Experimental y Salud Publica, 35(1), 103–109. https://doi.org/10.17843/rpmesp.2018.351.3605spa
dc.relation.referencesRATCLIFFE, N. A., VIEIRA, C. S., MENDONÇA, P. M., CAETANO, R. L., QUEIROZ, M. M. DE C., GARCIA, E. S., … AZAMBUJA, P. (2015). Detection and preliminary physico-chemical properties of antimicrobial components in the native excretions/secretions of three species of Chrysomya (Diptera, Calliphoridae) in Brazil. Acta Tropica. https://doi.org/10.1016/j.actatropica.2015.03.021spa
dc.relation.referencesSACSAQUISPE CONTRERAS, R. E., & VELÁSQUEZ POMAR, J. (2002). Manual de procedimientos anual para la prubea de sensibilidad 33 antimicribiana por el método de disco difusión. Organismo Público Descentralizado de Sector Salud. Retrieved from http://www.ins.gob.pe/insvirtual/images/otrpubs/pdf/manual sensibilidad 2.pdfspa
dc.relation.referencesSANEI-DEHKORDI, A., KHAMESIPOUR, A., AKBARZADEH, K., AKHAVAN, A. A., MIR AMIN MOHAMMADI, A., MOHAMMADI, Y., … RAFINEJAD, J. (2016). Anti Leishmania activity of Lucilia sericata and Calliphora vicina maggots in laboratory models. Experimental Parasitology. https://doi.org/10.1016/j.exppara.2016.08.007spa
dc.relation.referencesSHARMA, R., KUMAR GARG, R., & GAUR, J. R. (2015). Various methods for the estimation of the post mortem interval from Calliphoridae: A review. Egyptian Journal of Forensic Sciences, 5(1), 1–12. https://doi.org/10.1016/j.ejfs.2013.04.002spa
dc.relation.referencesSHERMAN, R. A. (2003). Maggot therapy for treating diabetic foot ulcers unresponsive to conventional therapy. Diabetes Care, 26(2), 446–451. https://doi.org/10.2337/diacare.26.2.446spa
dc.relation.referencesSHERMAN, R. A. (2009). Maggot therapy takes us back to the future of wound care: New and improved maggot therapy for the 21st century. Journal of Diabetes Science and Technology, 3(2), 336–344. https://doi.org/10.1177/193229680900300215spa
dc.relation.referencesSHERMAN, R. A. (2014). Mechanisms of Maggot-Induced Wound Healing: What Do We Know, and Where Do We Go from Here? Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2014/592419spa
dc.relation.referencesTZANEVA, V., MLADENOVA, I., TODOROVA, G., & PETKOV, D. (2016). Antibiotic treatment and resistance in chronic wounds of vascular origin. 34 Medicine and Pharmacy Reports, 89(3), 365–370. https://doi.org/10.15386/cjmed-647spa
dc.relation.referencesVAN DER PLAS, M. J.A., BALDRY, M., VAN DISSEL, J. T., JUKEMA, G. N., & NIBBERING, P. H. (2009). Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP. Diabetologia, 52(9), 1962–1970. https://doi.org/10.1007/s00125-009-1432-6spa
dc.relation.referencesVAN DER PLAS, MARIENA J.A., DAMBROT, C., DOGTEROM-BALLERING, H. C. M., KRUITHOF, S., VAN DISSEL, J. T., & NIBBERING, P. H. (2010). Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. Journal of Antimicrobial Chemotherapy, 65(5), 917–923. https://doi.org/10.1093/jac/dkq042spa
dc.relation.referencesVAN DER PLAS, MARIENA J.A., JUKEMA, G. N., WAI, S. W., DOGTEROM-BALLERING, H. C. M., LAGENDIJK, E. I., VAN GULPEN, C., … NIBBERING, P. H. (2008). Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 61(1), 117–122. https://doi.org/10.1093/jac/dkm407spa
dc.relation.referencesWAYMAN, J., NIROJOGI, V., WALKER, A., SOWINSKI, A., & WALKER, M. A. (2000). The cost effectiveness of larval therapy in venous ulcers. Journal of Tissue Viability, 10(3), 91–94. https://doi.org/10.1016/S0965-206X(00)80036-4spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lemblarvas de moscas
dc.subject.lembefecto antimicrobiano
dc.subject.lembresistencia bacteriana
dc.subject.proposalCalliphora vicinaspa
dc.subject.proposalSarconesiopsis magellanicaspa
dc.subject.proposalexcreciones y secreciones larvalesspa
dc.subject.proposalactividad antibacterialspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_16ecspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados-Universidad Colegio Mayor de Cundinamarca, 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados-Universidad Colegio Mayor de Cundinamarca, 2020