Mostrar el registro sencillo del ítem

dc.contributor.advisorDelgado Tiria, Félix Giovanni
dc.contributor.advisorRodríguez Panduro, Mauricio Humberto
dc.contributor.authorCáceres Munar, Brian Alejandro
dc.date.accessioned2021-05-24T15:32:11Z
dc.date.available2021-05-24T15:32:11Z
dc.date.issued2020
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/81
dc.description.abstractA lo largo de la historia de las epidemias causadas por virus transmitidos por vectores en el mundo, especialmente de aquellas ocurridas en países del trópico, Colombia siempre ha sido un desafortunado protagonista. Virus como el dengue, chikungunya y más recientemente el Zika, han generado grandes epidemias que han tenido gran impacto en la salud pública. En la actualidad es claro que el principal mecanismo de transmisión de estos arbovirus es mediante la picadura de mosquitos hembra del género Aedes infectado. No obstante, considerando también que altas viremias de estos virus pueden estar en la sangre de una persona o donante de sangre en un plazo aproximado de 7 días inclusive si es asintomática, el riesgo de infección por algún arbovirus que eventualmente sea transmitido por trasfusión podría considerarse. A pesar de esto son pocos los estudios que han medido directamente la prevalencia de arbovirus, según lo determinado por la presencia de ARN viral en bancos de sangre de países endémicos. Con base en lo anterior, el presente estudio tuvo por objetivo estimar la prevalencia de infecciones por DENV, ZIKV y CHIKV en donantes de sangre de áreas endémicas y no endémicas que asisten a los bancos de sangre de la Cruz Roja Colombiana. Para esto, se analizaron 474 muestras de donantes recolectadas durante los meses de noviembre de 2019 y febrero de 2020. Se utilizó un enfoque de RT-PCR semi anidada para la detección molecular de estos arbovirus, adicionalmente, 3 semanas después de la donación, se encuestaron a los donantes en los que se identificó virus para observar si habían presentado algún síntoma compatible con una arbovirosis; finalmente, las proporciones entre donantes infectados de sangre de áreas endémicas y no endémicas se compararon con una prueba de Chi-cuadrado. Como resultado de este trabajo, se encontró RNA viral de cualquiera de los tres arbovirus en el 25% de los donantes de sangre, la ciudad en la que más se detectaron donantes infectados fue Cartagena con una prevalencia total del 76% y los arbovirus más prevalentes en todas las ciudades fueron dengue 2 y dengue 1. Sorprendentemente se identificaron infecciones simultaneas con dos o más arbovirus en 20 de 113 donantes infectados. Curiosamente, la frecuencia global de infección por arbovirus en donantes de sangre de áreas no endémicas fue del 16.3% (IC 95% 11.8-21.8) y para los de áreas endémicas fue de 29.7% (IC 95% 24.2-35.6) (p = 0.001); esto se explicó por las diferencias entre DENV1 (2.9% IC 1.2-5.8; 8.9% IC 5.9-13.0%) y CHIKV (1.9% IC 0.7-4.5%; 12.2% IC 8.6- 16.7%), mientras que las otras frecuencias fueron similares. En conclusión, por primera vez en Colombia, se detectó una alta prevalencia de donantes de bancos de sangre infectados con DENV, ZIKV o CHIKV. La detección de estos tres arbovirus durante el brote de dengue más reciente, incluso en donantes de áreas no endémicas, revela la urgente necesidad de implementar políticas públicas en países endémicos para el control de todos estos virus en las donaciones de sangre.spa
dc.description.tableofcontentsIntroducción 1 1. Planteamiento del problema 4 2. Objetivos 6 2.1 Objetivo general 6 2.2 Objetivos específicos: 6 3. Antecedentes 7 4. Marco teórico 13 4.1 Generalidades virus dengue, Zika y chikungunya 13 4.2 Epidemiología de la infección por virus dengue, Zika y chikungunya 17 4.3 Virus dengue, Zika y chikungunya como posibles virus transmitidos por transfusión (TTV) 18 5. Metodología 21 6. Resultados25 7. Discusión 40 8. Conclusiones 45 9. Recomendaciones 47 10. Referencias 49 11. Anexos 63spa
dc.format.extent108p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleAnálisis de la prevalencia de dengue, Zika y Chikungunya en Donantes provenientes de la red nacional de bancos de sangre de La cruz roja Colombianaspa
dc.typeTrabajo de grado - Pregradospa
dc.description.degreelevelPregradospa
dc.description.degreenameBacteriólogo(a) y Laboratorista Clínicospa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotá D.Cspa
dc.publisher.programBacteriología y Laboratorio Clínicospa
dc.relation.referencesPadilla JC, Lizarazo FE, Murillo OL, Mendigaña FA, Pachón E, Vera MJ. Epidemiología de las principales enfermedades transmitidas por vectores en Colombia , 1990-2016. Biomédica. 2017;37(2):27–40.spa
dc.relation.referencesInstituto Nacional de Salud. Informe evento dengue en Colombia a periodo epidemiológico XIII-2018 [Internet]. Bogotá D.C. 2018 [citado el 15 de febrero de 2020]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/Dengue.aspxspa
dc.relation.referencesInstituto Nacional de Salud. Informe evento enfermedad por virus Zika, Colombia a periodo epidemiológico XIII-2018 [Internet]. Bogotá D.C. 2018 2018 [citado el 15 de febrero de 2020]. Disponible en : https://www.ins.gov.co/buscador eventos/SitePages/Evento.aspx?Event=1spa
dc.relation.referencesInstituto Nacional de Salud. Informe evento chikungunya, Colombia a periodo epidemiológico XIII-2018 [Internet]. Bogotá D.C. 2018. [citado el 15 de febrero de 2020]. Disponible en: https://www.ins.gov.co/buscador-eventos/SitePages/Evento.aspx?Event=2spa
dc.relation.referencesBhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496(7446):504–7.spa
dc.relation.referencesSlavov SN, Cilião-Alves DC, Gonzaga FAC, Moura DR, de Moura ACAM, de Noronha LAG, et al. Dengue seroprevalence among asymptomatic blood donors during an epidemic outbreak in Central-West Brazil. PLoS One. 2019 Mar 1;14(3).spa
dc.relation.referencesAubry M, Teissier A, Huart M, Merceron S, Vanhomwegen J, Roche C, et al. Zika Virus Seroprevalence, French Polynesia, 2014-2015. Emerg Infect Dis. 2017;23(4):669–72.spa
dc.relation.referencesMascarenhas M, Garasia S, Berthiaume P, Corrin T, Greig J, Ng V, et al. A scoping review of published literature on chikungunya virus. PLoS One. 2018;13(11):e0207554spa
dc.relation.referencesWang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, et al. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science. 2017;355(6323):395–8.spa
dc.relation.referencesDelgado FG, Torres KI, Castellanos JE, Romero-Sánchez C, Simon-Lorière E, Sakuntabhai A, et al. Improved Immune Responses Against Zika Virus After Sequential Dengue and Zika Virus Infection in Humans. Viruses. 2018;10(9): pii: E480.spa
dc.relation.referencesLum FM, Couderc T, Chia BS, Ong RY, Her Z, Chow A, et al. Antibody-mediated enhancement aggravates chikungunya virus infection and disease severity. Sci Rep. 2018;8(1).spa
dc.relation.referencesTambyah PA, Koay ES, Poon ML, Lin RV, Ong BK. Dengue hemorrhagic fever transmitted by blood transfusion. New England Journal of Medicine. 2008;359:1526–7.spa
dc.relation.referencesOh HB, Muthu V, Daruwalla ZJ, Lee SY, Koay ES, Tambyah PA. Bitten by a bug or a bag? Transfusion-transmitted dengue: a rare complication in the bleeding surgical patient. Transfusion. 2015;55(7):1655–61.spa
dc.relation.referencesGallian P, de Lamballerie X, Salez N, Piorkowski G, Richard P, Paturel L, et al. Prospective detection of chikungunya virus in blood donors, Caribbean 2014. Blood. 2014;123(23):3679–81.spa
dc.relation.referencesBarjas-Castro ML, Angerami RN, Cunha MS, Suzuki A, Nogueira JS, Rocco IM, et al. Probable transfusion-transmitted Zika virus in Brazil. Transfusion. 2016;56(7):1684–8.spa
dc.relation.referencesLinnen JM, Vinelli E, Sabino EC, Tobler LH, Hyland C, Lee T-H, et al. Dengue viremia in blood donors from Honduras, Brazil, and Australia. Transfusion. 2008;48(7):1355–62.spa
dc.relation.referencesChuang VWM, Wong TY, Leung YH, Ma ESK, Law YL, Tsang OTY, et al. Review of dengue fever cases in Hong Kong during 1998 to 2005. Hong Kong Med J. 2008;14(3):170–7.spa
dc.relation.referencesLevi JE, Nishiya A, Félix AC, Salles NA, Sampaio LR, Hangai F, et al. Real-time symptomatic case of transfusion-transmitted dengue. Transfusion. 2015 May 1;55(5):961– 4.spa
dc.relation.referencesSabino EC, Loureiro P, Esther Lopes M, Capuani L, McClure C, Chowdhury D, et al. Transfusion-transmitted dengue and associated clinical symptoms during the 2012 epidemic in Brazil. J Infect Dis. 2015;212(11):694–702.spa
dc.relation.referencesKarim F, Nasir N, Moiz B. Transfusion transmitted dengue: One donor infects two patients. Transfus Apher Sci. 2017;56(2):151–3.spa
dc.relation.referencesStramer SL. Current perspectives in transfusion-transmitted infectious diseases: emerging and re-emerging infections. ISBT Sci Ser. 2014;9(1):30–6.spa
dc.relation.referencesStramer SL, Hollinger FB, Katz LM, Kleinman S, Metzel PS, Gregory KR, et al. Emerging infectious disease agents and their potential threat to transfusion safety: Transfusion. 2009;49( 2):1-29.spa
dc.relation.referencesChusri S, Siripaitoon P, Silpapojakul K, Hortiwakul T, Charernmak B, Chinnawirotpisan P, et al. Kinetics of chikungunya infections during an outbreak in Southern Thailand, 2008-2009. Am J Trop Med Hyg . 2014;90(3):410–7.spa
dc.relation.referencesMagnus MM, Espósito DLA, Costa VA da, Melo PS de, Costa-Lima C, Fonseca BAL da, et al. Risk of Zika virus transmission by blood donations in Brazil. Hematol Transfus Cell Ther. 2018;40(3):250–4.spa
dc.relation.referencesStramer SL, Linnen JM, Carrick JM, Foster GA, Krysztof DE, Zou S, et al. Dengue viremia in blood donors identified by RNA and detection of dengue transfusion transmission during the 2007 dengue outbreak in Puerto Rico. Transfusion. 2012;52(8):1657–66.spa
dc.relation.referencesAshshi AM. The prevalence of dengue virus serotypes in asymptomatic blood donors reveals the emergence of serotype 4 in Saudi Arabia. Virol J. 2017 Jun 9;14(1).spa
dc.relation.referencesWilliamson PC, Linnen JM, Kessler DA, Shaz BH, Kamel H, Vassallo RR, et al. First cases of Zika virus-infected US blood donors outside states with areas of active transmission. Transfusion. 2017;57(2):770–8.spa
dc.relation.referencesSlavov SN, Hespanhol MR, Rodrigues ES, Levi JE, Ubiali EMA, Covas DT, et al. Zika virus RNA detection in asymptomatic blood donors during an outbreak in the northeast region of São Paulo State, Brazil, 2016. Transfusion. 2017;57(12):2897–901.spa
dc.relation.referencesSlavov SN, Otaguiri KK, Bianquini ML, Bitencourt HTO, Chagas MCM, Guerreiro DS de S, et al. Seroprevalence of Chikungunya virus in blood donors from Northern and Southeastern Brazil. Hematol Transfus Cell Ther. 2018 Oct 1;40(4):358–62.spa
dc.relation.referencesDavis LE, Beckham JD, Tyler KL. North American Encephalitic Arboviruses. Neurologic Clinics. 2008;26:727-57.spa
dc.relation.referencesBaltimore D. Expression of animal virus genomes. Bacteriol Rev. 1971;35(3):235–41.spa
dc.relation.referencesLindenbach BD, Thiel H-J, Rice CM. Fields Virology. 5th Editio. Lippincott-Raven Publishers, editor. Philadelphia; 2007. 3177 p.spa
dc.relation.referencesQiu J, Shang Y, Ji Z, Qiu T. In-silico Antigenicity Determination and Clustering of Dengue Virus Serotypes. Front Genet. 2018;7:9.spa
dc.relation.referencesDiamond MS, Pierson TC. Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Vol. 162, Cell. Cell Press; 2015. p. 488–92.spa
dc.relation.referencesCardosa J, Ooi MH, Tio PH, Perera D, Holmes EC, Bibi K, et al. Dengue virus serotype 2 from a sylvatic lineage isolated from a patient with dengue hemorrhagic fever. PLoS Negl Trop Dis. 2009;3(4):e423.spa
dc.relation.referencesPerera R, Kuhn RJ. Structural proteomics of dengue virus. Vol. 11, Current Opinion in Microbiology. 2008. p. 369–77.spa
dc.relation.referencesOrganizacion mundial de la salud. Dengue: Pautas para el diagnóstico, tratamiento, prevención y control. Ginebra. 2009. p. 10–2.spa
dc.relation.referencesSpiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence. 2013;4(6):525-536spa
dc.relation.referencesSrikiatkhachorn A, Green S. Markers of dengue disease severity. Curr Top Microbiol Immunol. 2010;338:67–82.spa
dc.relation.referencesLin C-F, Lei H-Y, Shiau A-L, Liu C-C, Liu H-S, Yeh T-M, et al. Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol. 2003;69(1):82–90.spa
dc.relation.referencesChaturvedi UC, Agarwal R, Elbishbishi EA, Mustafa AS. Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis.Immunol Med Microbiol.spa
dc.relation.referencesVicente CR, Herbinger KH, Fröschl G, Romano CM, Cabidelle A de SA, Junior CC. Serotype influences on dengue severity: A cross-sectional study on 485 confirmed dengue cases in Vitória, Brazil. BMC Infect Dis. 2016;16(1).spa
dc.relation.referencesKurane I, Innis BL, Nimmannitya S, Nisalak A, Meager A, Janus J, et al. Activation of T lymphocytes in dengue virus infections. High levels of soluble interleukin 2 receptor, soluble CD4, soluble CD8, interleukin 2, and interferon-gamma in sera of children with dengue. J Clin Invest. 1991;88(5):1473–80.spa
dc.relation.referencesGarcía G, Sierra B, Pérez AB, Aguirre E, Rosado I, Gonzalez N, et al. Asymptomatic dengue infection in a cuban population confirms the protective role of the RR variant of the FcγRIIa polymorphism. Am J Trop Med Hyg. 2010 Jun;82(6):1153–6.spa
dc.relation.referencesWang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, et al. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science. 2017;355(6323):395–8.spa
dc.relation.referencesLin H-H, Yip B-S, Huang L-M, Wu S-C. Zika virus structural biology and progress in vaccine development. Biotechnol Adv. 2019;36(1):47–53.spa
dc.relation.referencesKrauer F, Riesen M, Reveiz L, Oladapo OT, Martínez-Vega R, Porgo T V, et al. Zika Virus Infection as a Cause of Congenital Brain Abnormalities and Guillain–Barré Syndrome: Systematic Review. PLoS Med. 2017;14(1):e1002203.spa
dc.relation.referencesLeviton A, Holmes LB, Allred EN, Vargas J. Methodologic issues in epidemiologic studies of congenital microcephaly. Early Hum Dev. 2002;69(1–2):91–105.spa
dc.relation.referencesMiner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, et al. Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise. Cell. 2016;165(5):1081–91.spa
dc.relation.referencesWoods CG, Bond J, Enard W. Autosomal recessive primary microcephaly (MCPH): A review of clinical, molecular, and evolutionary findings. American Journal of Human Genetics. 2005;76:717-28.spa
dc.relation.referencesMoore CA, Staples JE, Dobyns WB, Pessoa A, Ventura C V., Da Fonseca EB, et al. Characterizing the pattern of anomalies in congenital zika syndrome for pediatric clinicians. JAMA Pediatrics. 2017;171:288-95spa
dc.relation.referencesKuhn R. Togaviridae. Fields Virology. 5 ed. Philadelphia: Editorial Lippincott Williams & Wilkins; 2007: 1101-52.spa
dc.relation.referencesRoberston M. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. II. General description and epidemiology. Trans R Soc Trop Med Hyg. 1955;49:33–57.spa
dc.relation.referencesBorgherini G, Poubeau P, Staikowsky F, Lory M, Moullec NL, Becquart JP, et al. Outbreak of Chikungunya on Reunion Island: Early Clinical and Laboratory Features in 157 Adult Patients. Clin Infect Dis. 2007;44(11):1401–7.spa
dc.relation.referencesFourie ED, Morrison JG. Rheumatoid arthritic syndrome after chikungunya fever. S Afr Med J . 1979;56(4):130–2.spa
dc.relation.referencesSun S, Xiang Y, Akahata W, Holdaway H, Pal P, Zhang X, et al. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. Elife. 2013 Feb 18;2013(2):e00435.spa
dc.relation.referencesSirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science (80- ). 2016 Apr 22;352(6284):467–70.spa
dc.relation.referencesZhang X, Ge P, Yu X, Brannan JM, Bi G, Zhang Q, et al. Cryo-EM structure of the mature dengue virus at 3.5-Å resolution. Nat Struct Mol Biol. 2013 Jan;20(1):105–10.spa
dc.relation.referencesInstituto Nacional de Salud. Informe evento dengue en Colombia a periodo epidemiológico XIII-2019 [Internet]. Bogotá D.C. 2019 [citado el 15 de febrero de 2020]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/Dengue.aspxspa
dc.relation.referencesInstituto Nacional de Salud. Informe evento dengue en Colombia 2020 [Internet]. Bogotá D.C. 2020 [citado el 15 de febrero de 2020]. Disponible en: https://www.ins.gov.co/Noticias/Paginas/Dengue.aspxspa
dc.relation.referencesCampos GS, Bandeira AC, Sardi SI. Zika virus outbreak, Bahia, Brazil. Vol. 21, Emerging Infectious Diseases. Centers for Disease Control and Prevention (CDC); 2015. p. 1885–6.spa
dc.relation.referencesCamacho E, Paternina-Gomez M, Blanco PJ, Osorio JE, Aliota MT. Detection of autochthonous zika virus transmission in Sincelejo, Colombia. Vol. 22, Emerging Infectious Diseases. Centers for Disease Control and Prevention (CDC); 2016. p. 927–9.spa
dc.relation.referencesInstituto Nacional de Salud. Informe evento enfermedad por virus Zika, Colombia a periodo epidemiológico XIII-2019 [Internet]. Bogotá D.C. 2019 [citado el 15 de febrero de 2020]. Disponible en : https://www.ins.gov.co/buscador eventos/SitePages/Evento.aspx?Event=1spa
dc.relation.referencesWorld Health Organization. Zika virus infection , Cape Verde. WHO. 2015spa
dc.relation.referencesCao-Lormeau V-M, Roche C, Teissier A, Robin E, Berry A-L, Mallet H-P, et al. Zika virus, French polynesia, South pacific, 2013. Emerg Infect Dis. 2014;20(6):1085–6.spa
dc.relation.referencesPetersen LR, Powers AM. Chikungunya: Epidemiology. Vol. 5, F1000Research. Faculty of 1000 Ltd; 2016;5.spa
dc.relation.referencesPanamerican Health Organization, World Health Organization. Chikungunya Data, Maps and Statistics [Internet]. citado 20 feberero 2020 . Disponible en: https://www.paho.org/hq/index.php?option=com_topics&view=rdmore&cid=5927&item= chikungunya&type=statistics&Itemid=40931&lang=enspa
dc.relation.referencesInstituto Nacional de Salud. Informe evento enfermedad por virus Chikungunya, Colombia a periodo epidemiológico XIII-2019 [Internet]. Bogotá D.C. 2019 [citado el 15 de febrero de 2020]. Disponible en : https://www.ins.gov.co/buscador eventos/SitePages/Evento.aspx?Event=1spa
dc.relation.referencesPetersen LR, Busch MP. Transfusion-transmitted arboviruses. Vox Sanguinis. 2010;98:495-503.spa
dc.relation.referencesAmerican Association Of Blood Banks. American Association Of Blood Banks AABB. 18th ed. American Association Of Blood Banks, editor. Bethesda, Maryland; 2018. 1107 p.spa
dc.relation.referencesLy S, Fortas C, Duong V, Benmarhnia T, Sakuntabhai A, Paul R, et al. Asymptomatic Dengue Virus Infections, Cambodia, 2012-2013. Emerg Infect Dis. 2019;25(7):1354–62.spa
dc.relation.referencesVaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, et al. Dengue in the early febrile phase: viremia and antibody responses. J Infect Dis. 1997;176(2):322–30.spa
dc.relation.referencesSchul W, Liu W, Xu H, Flamand M, Vasudevan SG. A Dengue Fever Viremia Model in Mice Shows Reduction in Viral Replication and Suppression of the Inflammatory Response after Treatment with Antiviral Drugs. J Infect Dis. 2007;195(5):665–74.spa
dc.relation.referencesLwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J, et al. Globe- Trotting Aedes aegypti and Aedes albopictus : Risk Factors for Arbovirus Pandemics. Vector-Borne Zoonotic Dis . 2020;2:71-81spa
dc.relation.referencesGoncalves A, Peeling RW, Chu MC, Gubler DJ, de Silva AM, Harris E, et al. Innovative and New Approaches to Laboratory Diagnosis of Zika and Dengue: A Meeting Report. J Infect Dis. 2018;217(7):1060–8.spa
dc.relation.referencesInstituto Nacional de Salud. Red Nacional de Bancos de Sangre, Directorio de Bancos de Sangre vs Donantes aceptados. Bogotá D.C. 2019. p. 11p.spa
dc.relation.referencesLanciotti RS, Kosoy OL, Laven JJ, Panella AJ, Velez JO, Lambert AJ, et al. Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis. 2006;13(5):764–7.spa
dc.relation.referencesChien LJ, Liao TL, Shu PY, Huang JH, Gubler DJ, Chang GJJ. Development of real-time reverse transcriptase PCR assays to detect and serotype dengue viruses. J Clin Microbiol. 2006 Apr;44(4):1295–304.spa
dc.relation.referencesCalvo EP, Sánchez-Quete F, Durán S, Sandoval I, Castellanos JE. Easy and inexpensive molecular detection of dengue, chikungunya and zika viruses in febrile patients. Acta Trop. 2016 Nov 1;163:32–7.spa
dc.relation.referencesOMS | Dengue: Guías para el diagnóstico, tratamiento, prevención y control. WHO. 2017;spa
dc.relation.referencesGrange L, Simon-Loriere E, Sakuntabhai A, Gresh L, Paul R, Harris E. Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections. Frontiers in Immunology. 2014;5:280.spa
dc.relation.referencesSwaminathan S, Khanna N, Herring B, Mahalingam S. Dengue vaccine efficacy trial: Does interference cause failure?. The Lancet Infectious Diseases. 2013;13:191-2.spa
dc.relation.referencesuiz-López F, González-Mazo A, Vélez-Mira A, Gómez GF, Zuleta L, Uribe S, et al. Presencia de Aedes (stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia. Biomedica. 2016;36(2):303–8.spa
dc.relation.referencesPanamerican Health Organization .Actualización Epidemiológica [Internet]. citado 2020 Febero 20. Disponible en: https://bit.ly/2Pes0li.spa
dc.relation.referencesPérez-Castro R, Castellanos JE, Olano VA, Matiz MI, Jaramillo JF, Vargas SL, et al. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia. Mem Inst Oswaldo Cruz. 2016 Apr 1;111(4):233–40.spa
dc.relation.referencesBeckham JD, Tyler KL. Arbovirus Infections. Lifelong Learning in Neurology. 2015;21:1599-611.spa
dc.relation.referencesPatterson J, Sammon M, Garg M. Dengue, zika and chikungunya: Emerging arboviruses in the new world. Vol. 17, Western Journal of Emergency Medicine. eScholarship; 2016. p. 671–9.spa
dc.relation.referencesThiberville SD, Moyen N, Dupuis-Maguiraga L, Nougairede A, Gould EA, Roques P, et al. Chikungunya fever: Epidemiology, clinical syndrome, pathogenesis and therapy. , Antiviral Research.2013;99:345-70.spa
dc.relation.referencesMarques-Toledo CA, Bendati MM, Codeço CT, Teixeira MM. Probability of dengue transmission and propagation in a non-endemic temperate area: Conceptual model and decision risk levels for early alert, prevention and control. Parasites and Vectors. 2019 Jan 16;12(1).spa
dc.relation.referencesRückert C, Weger-Lucarelli J, Garcia-Luna SM, Young MC, Byas AD, Murrieta RA, et al. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat Commun. 2017 May 19;8.spa
dc.relation.referencesChaves BA, Orfano AS, Nogueira PM, et al. Coinfection with Zika Virus (ZIKV) and Dengue Virus Results in Preferential ZIKV Transmission by Vector Bite to Vertebrate Host. J Infect Dis. 2018;218(4):563‐ 571.spa
dc.relation.referencesCarrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez- Gutierrez M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis. 2018 Jan 30;18(1).spa
dc.relation.referencesVieira DS, Zambenedetti MR, Requião L, Borghetti IA, Luna LKDS, Santos ADO Dos, et al. Epidemiological profile of zika, dengue and chikungunya virus infections identified by medical and molecular evaluations in Rondonia, Brazil. Rev Inst Med Trop Sao Paulo. 2019;61.spa
dc.relation.referencesMartinez JD, Garza JAC de la, Cuellar-Barboza A. Going Viral 2019: Zika, Chikungunya, and Dengue. Vol. 37, Dermatologic Clinics. W.B. Saunders; 2019. p. 95–105.spa
dc.relation.referencesWaterman SH, Novak RJ, Sather GE, Bailey RE, Rios I, Gubler DJ. Dengue transmission in two Puerto Rican communities in 1982. Am J Trop Med Hyg. 1985;34(3):625–32.spa
dc.relation.referencesReyes M, Mercado JC, Standish K, Matute JC, Ortega O, Moraga B, et al. Index cluster study of dengue virus infection in Nicaragua. Am J Trop Med Hyg. 2010 Sep;83(3):683– 9.spa
dc.relation.referencesGuzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: A continuing global threat. Nat Rev Microbiol. 2010;8(12):S7–16.spa
dc.relation.referencesVaughn DW. Invited commentary: Dengue lessons from Cuba. Am J Epidemiol. 2000;152(9):800–3.spa
dc.relation.referencesSangkawibha N, Rojanasuphot S, Ahandrik S, Viriyapongse S, Jatanasen S, Salitul V. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak - Wikidata [Internet]. [cited 2020 Mar 17]. Available from: https://www.wikidata.org/wiki/Q29619424spa
dc.relation.referencesCáceres Munar BA, Castellanos Parra JE, Rodríguez Panduro MH. Antibody-dependent enhancement in the immunopathogenesis of severe dengue, implications for the development and use of vaccines. Acta Biologica Colombiana. 2019;24:439-51spa
dc.relation.referencesErasmus JH, Rossi SL, Weaver SC. Development of Vaccines for Chikungunya Fever. J Infect Dis [Internet]. 2016 Dec 15 [cited 2020 Mar 28];214(suppl 5):S488–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27920179spa
dc.relation.referencesWeaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease [Internet]. Vol. 372, New England Journal of Medicine. Massachussetts Medical Society; 2015 [cited 2020 Mar 28]. p. 1231–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25806915spa
dc.relation.referencesVillero-Wolf Y, Mattar S, Puerta-González A, Arrieta G, Muskus C, Hoyos R, et al. Genomic epidemiology of Chikungunya virus in Colombia reveals genetic variability of strains and multiple geographic introductions in outbreak, 2014. Sci Rep. 2019 Dec 1;9(1).spa
dc.relation.referencesWang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, Bhaumik SK, et al. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science. 2017;355(6323):395–8.spa
dc.relation.referencesThein S, Aung MM, Shwe TN, Aye M, Zaw A, Aye K, et al. Risk factors in dengue shock syndrome. Am J Trop Med Hyg. 1997;56(5):566–72.spa
dc.relation.referencesTsujimoto H, Hanley KA, Sundararajan A, Devitt NP, Schilkey FD, Hansen IA. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus. PLoS One. 2017 Feb 1;12(2).spa
dc.relation.referencesKraemer MUG, Sinka ME, Duda KA, Mylne AQN, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. Elife. 2015 Jun 30;4(JUNE2015).spa
dc.relation.referencesPierelli L, Vacca M, Zini G, Maresca M, Menichella G, Santinelli S, et al. Emergency response of four transfusion centers during the last Chikungunya outbreak in Italy. Transfusion. 2018;58(12):3027–30.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.lembVirus del zika
dc.subject.lembVirus chikungunya
dc.subject.lembVirus del dengue
dc.subject.lembInfección
dc.subject.lembEnfermedad
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados - Universidad Colegio Mayor de Cundinamarca, 2020