Mostrar el registro sencillo del ítem

dc.contributor.advisorSantos Ruiz, Paola Andrea
dc.contributor.authorOrjuela Vargas, Luisa Fernanda
dc.date.accessioned2023-07-11T19:42:27Z
dc.date.available2023-07-11T19:42:27Z
dc.date.issued2022-10
dc.identifier.urihttps://repositorio.unicolmayor.edu.co/handle/unicolmayor/6545
dc.description.abstractEn los últimos años, la industria farmacéutica, se ha visto amenazada por el riesgo de contaminación por Burkholderia cepacia (B. cepacia), bacteria Gram negativa que tiene la capacidad de crecer en condiciones de privación de nutrientes y tiende a colonizar todas las superficies del sistema de tratamiento del agua. A su vez, el agua es considerada una de las principales fuentes de contaminación en la industria farmacéutica, generando así mayor preocupación en la fabricación de productos estériles y no estériles, lo que ha llevado a los organismos internacionales y nacionales a incluir en sus políticas, la identificación y detección de este patógeno. Por lo anterior, en este trabajo se realizó una revisión sistemática en diferentes bases de datos sobre los factores asociados a la persistencia y virulencia de B. cepacia en esta industria y los métodos diagnósticos que permitan su identificación, utilizado para la fabricación de productos. De acuerdo con lo reportado por la FDA, en los Estados Unidos en los años 2004 a 2011 se identificaron 64 retiros de productos por contaminación microbiológica, de los cuales el 70% correspondieron a B. cepacia. Para el periodo 2012 a 2022, esta cifra aumentó a 109 retiros de producto. Por su parte, en Colombia no se han reportado retiros de producto por esta causa. La capacidad de B. cepacia de sobrevivir y resistir a estos ambientes está dada principalmente por factores como quorum sensing, la formación de biopelículas y lipopolisacáridos. Estos mecanismos le permiten detectar señales, realizar procesos de comunicación y regulación bacteriana, y contribuir a la resistencia a los antibióticos. La implementación de métodos de diagnóstico sensibles como PCR cuantitativa o espectrometría de masas (MALDI-TOF MS), podría mejorar la identificación y notificación más oportuna de la contaminación para la industria farmacéutica, lo que a su vez ayudará a contener una posible infección en pacientes inmunosuprimidos por causa de estos productos contaminados.spa
dc.description.abstractIn recent years, the pharmaceutical industry has been threatened by contamination by Burkholderia cepacia (B. cepacia), a Gram-negative bacteria that grows in conditions of nutrient deprivation and tends to colonize all surfaces of the water treatment system. Water is considered one of the main sources of contamination, thus generating concern in the manufacture of sterile and non-sterile products, which has led international and national organizations to include in their policies the identification and detection of this pathogen. Therefore, in this work, a systematic review was carried out in different databases on the factors associated with the persistence of B. cepacia in the pharmaceutical industry and the diagnostic methods that allow its identification in the water treatment system used for the manufacture of products. According to reported by the FDA, in the United States from 2004 to 2011, an analysis of 64 recalls of products with microbiological contamination was carried out, 70% of which occurred in non-sterile products. In Colombia, according to the information published by INVIMA and the Instituto Nacional de Salud (INS), to date no product recalls have been reported for this cause. The ability of B. cepacia to survive and resist these environments is mainly due to factors such as quorum sensing, biofilm formation and lipopolysaccharides. These mechanisms allow it to detect signals, carry out the process of bacterial communication and regulation, and contribute to antibiotic resistance. The implementation of sensitive diagnostic methods such as quantitative PCR or mass spectrometry (MALDI-TOF MS) could improve the identification and more timely reporting of contamination to the pharmaceutical industry, which in turn will help to contain possible infection in immunosuppressed patients due to these contaminated products.eng
dc.description.tableofcontentsContenido 1. Introducción 11 2. Marco de referencia .. 14 2.1 Características generales de la industria farmacéutica.. 14 2.2 Sistema de agua en la industria farmacéutica17 2.3 Normatividad vigente del sector farmacéutico19 2.3.1 Normativa Internacional ...20 2.3.2 Normativa Nacional..22 2.4 Contaminación microbiológica en la Industria farmacéutica22 2.4.1. Casos de contaminación bacteriana y retiro de medicamentos ..23 2.5 Burkholderia cepacia como causante de contaminación en farmacia.27 2.5.1. Hábitat y biodiversidad de B. cepacia...28 2.6 Taxonomía ...29 2.7 Características bioquímicas y bacteriológicas de B. cepacia 30 3.Objetivos. 32 3.1 Objetivo General ..32 3.2 Objetivos específicos ..32 4. Diseño metodológico . 33 4.1 Estrategias de búsqueda bibliográfica 33 4.3 Extracción de datos.34 4.3.2 Palabras clave..34 4.3.1 Criterios de inclusión - elegibilidad ..34 4.3.2 Criterios de exclusión...35 5. Resultados .. 36 5.1 Publicaciones seleccionados desde las diferentes bases de datos ...36 5.2 Retiro de producto asociado a la contaminación por B. cepacia...40 5.2.1 Reporte de brotes por B. cepacia en Colombia..45 5.3 Factores de virulencia y capacidad patogénica de B. cepacia ..48 5.3.1 Sistemas de quorum sensing (QS)..49 5.3.2 Biopelículas...51 5.3.3 Lipopolisacárido ...51 5.3.4 Fosfolipasas y lipasas, factor sigma 51 5.4 Métodos de identificación de B. cepacia.53 5.4.1 Pruebas de identificación fenotípicas para B. cepacia ...53 5.4.2 Pruebas Moleculares ...55 5.4.2.2 Secuenciación de genes hisA56 5.4.2.3 Secuenciación de genes rpsU ..57 5.4.2.4 Secuenciación del gen recA ..57 6.Conclusiones.. 58 7. Referencias 59spa
dc.format.extent66p.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Colegio Mayor de Cundinamarcaspa
dc.rightsDerechos Reservados Universidad Colegio Mayor de Cundinamarca, 2022spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.titleEstudio de los factores asociados a la presencia de Burkholderia cepacia en el sistema de tratamiento de agua utilizado para la fabricación de productos farmacéuticosspa
dc.typeTrabajo de grado - Maestríaspa
dc.description.degreelevelPregradospa
dc.description.degreenameMagíster en Microbiologíaspa
dc.publisher.facultyFacultad de Ciencias de la Saludspa
dc.publisher.placeBogotaspa
dc.publisher.programMaestría en Microbiologíaspa
dc.relation.referencesHaleem RM, Salem MY, Fatahallah FA, Abdelfattah LE. Quality in the pharmaceutical industry - A literature review. Vol. 23, Saudi Pharmaceutical Journal. 2015.spa
dc.relation.referencesThe United States pharmacopeial convention. United States Pharmacopeia (USP). In: USP 43. 2022.spa
dc.relation.referencesResolución 1160 de 2016. Ministerio de salud y protección social. 2016spa
dc.relation.referencesTavares M, Kozak M, Balola A, Sá-Correia I. Burkholderia cepacia Complex Bacteria: a Feared Contamination Risk in Water-Based Pharmaceutical Products. 2020; Available from: https://doi.org/10.1128/CMRspa
dc.relation.referencesVial L, Chapalain A, Groleau MC, Déziel E. The various lifestyles of the Burkholderia cepacia complex species: A tribute to adaptation. Vol. 13, Environmental Microbiology. 2011. p. 1–12.spa
dc.relation.referencesJohn J. Lipuma BJCJPARV. Burkholderia, Stenotrophomonas, Ralstonia, Cupriavidus, Pandoraea, Brevundimonas, Comamonas, Delftia, and Acidovorax *. In: Manual of Clinical Microbiology, 10th Edition. 2015.spa
dc.relation.referencesHendry S, Steinke S, Wittstein K, Stadler M, Harmrolfs K, Adewunmi Y, et al. Functional Analysis of Phenazine Biosynthesis Genes in Burkholderia spp. Appl Environ Microbiol. 2021;87 (11).spa
dc.relation.referencesParke JL, Gurian-Sherman D. Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains [Internet]. 2001. Available from: www.annualreviews.orgspa
dc.relation.referencesLobo F. La Industria Farmacéutica en la Actualidad: Un Vistazo a sus características. Papeles de Economía Española. 2019;160.spa
dc.relation.referencesSanidad M de, Bienestar CY. Fabricación de sustancias activas biológicas y medicamentos biológicos para uso humano. Guía NFC. 2018;spa
dc.relation.referencesLópez Aguirre J, Pérez Aguilera M de J. Diseño experimental para el desarrollo de metodología en productos farmacéuticos preservados. Celaya. 2013;5(3).spa
dc.relation.referencesMárquez R, Marveya M. Configuración económica de la industria farmacéutica. Vol. 38, Mérida. Venezuela. 2019.spa
dc.relation.referencesSarkis M, Bernardi A, Shah N, Papathanasiou MM. Emerging challenges and opportunities in pharmaceutical manufacturing and distribution. Processes. 2021;9(3).spa
dc.relation.referencesTait K, D. Zaebst D. Industria farmacéutica industria farmacéutica. Enciclopedia de salud y seguridad en el trabajo. 2022;spa
dc.relation.referencesAinurofiq A, Esther Dinda K, Widia Pangestika M, Himawati U, Dyah Wardhani W, Tamarin Sipahutar Y. The effect of polymorphism on active pharmaceutical ingredients: A review. Vol. 11, International Journal of Research in Pharmaceutical Sciences. 2020.spa
dc.relation.referencesAbrantes CG, Duarte D, Reis CP. An Overview of Pharmaceutical Excipients: Safe or Not Safe? Vol. 105, Journal of Pharmaceutical Sciences. 2016.spa
dc.relation.referencesHuang J, Romero-Torres S, Moshgbar M. Practical considerations in data pre-treatment for NIR and Raman spectroscopy. Vol. 13, American Pharmaceutical Review. 2010.spa
dc.relation.referencesMohan S. Compression Physics of Pharmaceutical Powders: A Review. Int J Pharm Sci Res. 2012;3 (06).spa
dc.relation.referencesPan X mei, Li J, Gan R, Hu X nan. Preparation and in vitro evaluation of enteric-coated tablets of rosiglitazone sodium. Saudi Pharmaceutical Journal. 2015;23(5).spa
dc.relation.referencesPriya, Chaudhary M. Hazard Analysis and Critical Control Points as a Quality Risk Management Tool in the Pharmaceutical Industry: A Systematic Review. Journal of Drug Delivery and Therapeutics. 2021;11(5-S).spa
dc.relation.referencesUnited States Pharmacopeia (USP). <60> Microbiological Examination of Non-Sterile Products Tests for Burkholderia Cepacia Complex. USP 43.spa
dc.relation.referencesWorld Health Organization (WHO). Quality assurance of pharmaceuticals. In 2004.spa
dc.relation.referencesAdministración de Drogas y Alimentos (FDA). Administración de Drogas y Alimentos (FDA). In 2005.spa
dc.relation.referencesInternational Conference on Harmonization (ICH). International Conference on Harmonization (ICH). In 2008.spa
dc.relation.referencesInternational Organization for Standardization. International Organization for Standardization (ISO). In.spa
dc.relation.referencesSuvarna K, Lolas A, Hughes P, Friedman RL. Case studies of microbial contamination in biologic product manufacturing. Vol. 14, American Pharmaceutical Review. 2011.spa
dc.relation.referencesJimenez L. Microbial diversity in pharmaceutical product recalls and environments. Vol. 61, PDA Journal of Pharmaceutical Science and Technology. 2007.spa
dc.relation.referencesdi Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, et al. Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol. 1997;63(11).spa
dc.relation.referencesde Volder AL, Teves S, Isasmendi A, Pinheiro JL, Ibarra L, Breglia N, et al. Distribution of Burkholderia cepacia complex species isolated from industrial processes and contaminated products in argentina. International Microbiology. 2021 May 1; 24(2):157–67spa
dc.relation.referencesButt AT, Thomas MS. Iron acquisition mechanisms and their role in the virulence of Burkholderia species. Vol. 7, Frontiers in Cellular and Infection Microbiology. 2017.spa
dc.relation.referencesMah TFC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Vol. 9, Trends in Microbiology. 2001.spa
dc.relation.referencesBaldwin A, Mahenthiralingam E, Drevinek P, Vandamme P, Govan JR, Waine DJ, et al. Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis. 2007;13 (3).spa
dc.relation.referencesJung BK, Hong SJ, Park GS, Kim MC, Shin JH. Isolation of Burkholderia cepacia JBK9 with plant growth-promoting activity while producing pyrrolnitrin antagonistic to plant fungal diseases. Appl Biol Chem. 2018;61(2).spa
dc.relation.referencesDéfago G, Haas D. Pseudomonads as antagonists of soilborne plant pathogens: Modes of action and genetic analysis. In: Soil Biochemistry: Volume 6: Volume 6. 2017.spa
dc.relation.referencesLessie TG, Hendrickson W, Manning BD, Devereux R. Genomic complexity and plasticity of Burkholderia cepacia. Vol. 144, FEMS Microbiology Letters. 1996.spa
dc.relation.referencesMahenthiralingam E, Baldwin A, Dowson CG. Burkholderia cepacia complex bacteria: Opportunistic pathogens with important natural biology. Vol. 104, Journal of Applied Microbiology. 2008.spa
dc.relation.referencesBurkholder WH. Sour skin, a bacterial rot of Onion bulbs. Phytopathology. 1950;40 (1).spa
dc.relation.referencesU.S. Food and Drug Administration. A review of reported recalls involving microbiological control 2004-2011with emphasis on FDA. 2012;spa
dc.relation.referencesU.S. Food and Drug Administration. Burkholderia cepacia.spa
dc.relation.referencesStewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother. 1996;40 (11).spa
dc.relation.referencesO’Grady EP, Sokol PA. Burkholderia cenocepacia differential gene expression during host-pathogen interactions and adaptation to the host environment. Front Cell Infect Microbiol. 2011;1:15.spa
dc.relation.referencesChattoraj SS, Murthy R, Ganesan S, Goldberg JB, Zhao Y, Hershenson MB, et al. Pseudomonas aeruginosa alginate promotes Burkholderia cenocepacia persistence in cystic fibrosis transmembrane conductance regulator knockout mice. Infect Immun. 2010;78(3).spa
dc.relation.referencesPaganin P, Tabacchioni S, Chiarini L. Pathogenicity and biotechnological applications of the genus Burkholderia. Vol. 6, Central European Journal of Biology. 2011.spa
dc.relation.referencesCauduro GP, Leal AL, Marmitt M, de Ávila LG, Kern G, Quadros PD, et al. New benzo(a)pyrene-degrading strains of the Burkholderia cepacia complex prospected from activated sludge in a petrochemical wastewater treatment plant. Environ Monit Assess. 2021;193(4).spa
dc.relation.referencesMinogue E, Tuite NL, Smith CJ, Reddington K, Barry T. A rapid culture independent methodology to quantitatively detect and identify common human bacterial pathogens associated with contaminated high purity water. BMC Biotechnol. 2015 Feb 18;15(1).spa
dc.relation.referencesElshafie HS, Camele I. An overview of metabolic activity, beneficial and pathogenic aspects of burkholderia spp. Vol. 11, Metabolites. MDPI AG; 2021.spa
dc.relation.referencesAbbott IJ, Peleg AY. Stenotrophomonas, achromobacter, and nonmelioid burkholderia species: Antimicrobial resistance and therapeutic strategies. Semin Respir Crit Care Med. 2015;36 (1):99–110.spa
dc.relation.referencesGlowicz J, Crist M, Gould C, Moulton-Meissner H, Noble-Wang J, de Man TJB, et al. A multistate investigation of health care–associated Burkholderia cepacia complex infections related to liquid docusate sodium contamination, January-October 2016. Am J Infect Control. 2018 Jun 1;46(6):649–55.spa
dc.relation.referencesFernández-Acosta EL, Fretes de Aquino SL, González Ruiz Díaz R, Domenech MG. Análisis de riesgo de un microorganismo objetable en un suplemento dietario para la liberación de lotes. Memorias del Instituto de Investigaciones en Ciencias de la Salud. 2021;19 (3).spa
dc.relation.referencesParenteral Drug Association. Exclusion of Objectionable Microorganisms from Nonsterile Pharmaceuticals, Medical Devices, and Cosmetics. Vol. No. 67. 2014.spa
dc.relation.referencesBill Huitt WM. Appendix C: Guide to Inspections of High Purity Water Systems. In: Bioprocessing Piping and Equipment Design. 2016.spa
dc.relation.referencesWorld Federation for Culture Collections Statutes. Int J Syst Bacteriol. 1972;22(4).spa
dc.relation.referencesValderrama-Beltrán SL, Gualtero-Trujillo SM, Rodríguez-Peña J, LinaresMiranda CJ, Gonzalez-Rubio ÁP, Vega-Galvis MC, et al. Pseudobrote por Burkholderia cepacia en dos unidades de cuidados intensivos de un Hospital Universitario en Bogotá – Colombia. Infectio. 2019;23(2).spa
dc.relation.referencesU.S. Food and Drug Administration SSMD. FDA advises drug manufacturers that Burkholderia cepacia complex poses a contamination risk in non-sterile, water-based drug products. 2017.spa
dc.relation.referencesSouza Dias MB, Cavassin LGT, Stempliuk V, Xavier LS, Lobo RD, Sampaio JLM, et al. Multi-institutional outbreak of Burkholderia cepacia complex associated with contaminated mannitol solution prepared in compounding pharmacy. Am J Infect Control. 2013;41 (11).spa
dc.relation.referencesCundell T. Excluding burkholderia cepacia complex from aqueous, nonsterile drug products. Am Pharm Rev. 2019;22 (1).spa
dc.relation.referencesTorbeck L, Raccasi D, Guilfoyle DE, Friedman RL, Hussong D. Burkholderia cepacia: This decision is overdue. Vol. 65, PDA Journal of Pharmaceutical Science and Technology. 2011.spa
dc.relation.referencesA review of reported recalls involving microbiological control 2004-2011with emphasis on FDA.spa
dc.relation.referencesRatajczak M, Kaminska D, Dlugaszewska J, Gajecka M. Antibiotic resistance, biofilm formation, and presence of genes encoding virulence factors in strains isolated from the pharmaceutical production environment. Pathogens. 2021;10 (2).spa
dc.relation.referencesHolmes A, Govan J, Goldstein R. Agricultural use of Burkholderia (Pseudomonas) cepacia: A threat to human health? Vol. 4, Emerging Infectious Diseases. 1998.spa
dc.relation.referencesBoto L. Horizontal gene transfer in evolution: Facts and challenges. Vol. 277, Proceedings of the Royal Society B: Biological Sciences. 2010.spa
dc.relation.referencesEstrada-de los Santos P, Rojas-Rojas FU, Tapia-García EY, VásquezMurrieta MS, Hirsch AM. To split or not to split: an opinion on dividing the genus Burkholderia. Vol. 66, Annals of Microbiology. 2016.spa
dc.relation.referencesRojas-Rojas FU, López-Sánchez D, Meza-Radilla G, Méndez-Canarios A, Ibarra JA, Estrada-de los Santos P. The controversial Burkholderia cepacia complex, a group of plant growth promoting species and plant, animals and human pathogens. Rev Argent Microbiol. 2019;51(1).spa
dc.relation.referencesLewis ERG, Torres AG. The art of persistence-the secrets to Burkholderia chronic infections. Vol. 74, Pathogens and Disease. 2016.spa
dc.relation.referencesButt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochemical Journal. 2014;459(2).spa
dc.relation.referencesKim J, Kang Y, Choi O, Jeong Y, Jeong JE, Lim JY, et al. Regulation of polar flagellum genes is mediated by quorum sensing and FlhDC in Burkholderia glumae. Mol Microbiol. 2007;64(1).spa
dc.relation.referencesSuppiger A, Schmid N, Aguilar C, Pessi G, Eberl L. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Vol. 4, Virulence. 2013.spa
dc.relation.referencesBuroni S, Scoffone VC, Fumagalli M, Makarov V, Cagnone M, Trespidi G, et al. Investigating the mechanism of action of diketopiperazines inhibitors of the burkholderia cenocepacia quorum sensing synthase CepI: A site-directed mutagenesis study. Front Pharmacol. 2018;9.spa
dc.relation.referencesNarayanaswamy VP, Duncan AP, LiPuma JJ, Wiesmann WP, Baker SM, Townsend SM. In vitro activity of a novel glycopolymer against biofilms of burkholderia cepacia complex cystic fibrosis clinical isolates. Antimicrob Agents Chemother. 2019;63(6).spa
dc.relation.referencesFazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Vol. 16, Environmental Microbiology. 2014.spa
dc.relation.referencesGanesh PS, Vishnupriya S, Vadivelu J, Mariappan V, Vellasamy KM, Shankar EM. Intracellular survival and innate immune evasion of Burkholderia cepacia: Improved understanding of quorum sensing-controlled virulence factors, biofilm, and inhibitors. Vol. 64, Microbiology and Immunology. 2020.spa
dc.relation.referencesCaraher E, Reynolds G, Murphy P, McClean S, Callaghan M. Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro. European Journal of Clinical Microbiology and Infectious Diseases. 2007 Mar 1;26(3):213–6.spa
dc.relation.referencesNelson J. Virulence factors of Burkholderia cepacia. FEMS Immunol Med Microbiol. 1994;8(2).spa
dc.relation.referencesRAJASEKHARAN SK, RAMESH S. Cellulase Inhibits Burkholderia cepacia Biofilms on Diverse Prosthetic Materials. India; 2013 Jul.spa
dc.relation.referencesLeitão JH, Sousa SA, Ferreira AS, Ramos CG, Silva IN, Moreira LM. Pathogenicity, virulence factors, and strategies to fight against Burkholderia cepacia complex pathogens and related species. Vol. 87, Applied Microbiology and Biotechnology. 2010.spa
dc.relation.referencesSrisanga K, Suthapot P, Permsirivisarn P, Govitrapong P, Tungpradabkul S, Wongtrakoongate P. Polyphosphate kinase 1 of Burkholderia pseudomallei controls quorum sensing, RpoS and host cell invasion. J Proteomics. 2019;194.spa
dc.relation.referencesWongtrakoongate P, Tumapa S, Tungpradabkul S. Regulation of a quorum sensing system by stationary phase sigma factor RpoS and their coregulation of target genes in Burkholderia pseudomallei. Microbiol Immunol. 2012;56 (5).spa
dc.relation.referencesMullen T, Markey K, Murphy P, McClean S, Callaghan M. Role of lipase in Burkholderia cepacia complex (Bcc) invasion of lung epithelial cells. European Journal of Clinical Microbiology and Infectious Diseases. 2007;26(12).spa
dc.relation.referencesWillsey GG, Wargo MJ. Extracellular lipase and protease production from a model drinking water bacterial community is functionally robust to absence of individual members. PLoS One. 2015;10(11).spa
dc.relation.referencesMcClean S, Callaghan M. Burkholderia cepacia complex: Epithelial cellpathogen confrontations and potential for therapeutic intervention. Vol. 58, Journal of Medical Microbiology. 2009.spa
dc.relation.referencesScoffone VC, Chiarelli LR, Trespidi G, Mentasti M, Riccardi G, Buroni S. Burkholderia cenocepacia infections in cystic fibrosis patients: Drug resistance and therapeutic approaches. Vol. 8, Frontiers in Microbiology. 2017.spa
dc.relation.referencesSousa SA, Feliciano JR, Pita T, Guerreiro SI, Leitão JH. Burkholderia cepacia complex regulation of virulence gene expression: A review. Vol. 8, Genes. 2017.spa
dc.relation.referencesBou G, Fernández-Olmos A, García C, Sáez-Nieto JA, Valdezate S. Bacterial identification methods in the microbiology laboratory. Enferm Infecc Microbiol Clin. 2011;29 (8).spa
dc.relation.referencesMeza-Radilla G, Larios-Serrato V, Hernández-Castro R, Ibarra JA, EstradaDe Los Santos P. Burkholderia species in human infections in mexico: Identification of b. cepacia, b. contaminans, b. multivorans, b. vietnamiensis,b. pseudomallei and a new burkholderia species. PLoS Negl Trop Dis. 2021;15 (6).spa
dc.relation.referencesBurns JL, Rolain JM. Culture-based diagnostic microbiology in cystic fibrosis: Can we simplify the complexity? Vol. 13, Journal of Cystic Fibrosis. 2014.spa
dc.relation.referencesGautam V, Sharma M, Singhal L, Kumar S, Kaur P, Tiwari R, et al. MALDITOF mass spectrometry: An emerging tool for unequivocal identification of non-fermenting Gram-negative bacilli. Indian Journal of Medical Research. 2017 May 1;145 (May):665–72.spa
dc.relation.referencesFurlan JPR, Pitondo-Silva A, Braz VS, Gallo IFL, Stehling EG. Evaluation of different molecular and phenotypic methods for identification of environmental Burkholderia cepacia complex. World J Microbiol Biotechnol. 2019 Mar 1;35 (3).spa
dc.relation.referencesPapaleo MC, Perrin E, Maida I, Fondi M, Fani R, Vandamme P. Identification of species of the Burkholderia cepacia complex by sequence analysis of the hisA gene. J Med Microbiol. 2010 Oct;59 (10):1163–70spa
dc.relation.referencesDevanga Ragupathi NK, Veeraraghavan B. Accurate identification and epidemiological characterization of Burkholderia cepacia complex: An update. Vol. 18, Annals of Clinical Microbiology and Antimicrobials. BioMed Central Ltd.; 2019spa
dc.relation.referencesFrickmann H, Neubauer H, Loderstaedt U, Derschum H, Hagen RM. rpsU - based discrimination within the genus Burkholderia . Eur J Microbiol Immunol (Bp). 2014;4(2).spa
dc.relation.referencesCesarini S, Bevivino A, Tabacchioni S, Chiarini L, Dalmastri C. RecA gene sequence and Multilocus Sequence Typing for species-level resolution of Burkholderia cepacia complex isolates. Lett Appl Microbiol. 2009;49 (5)spa
dc.relation.referencesTavares M, Kozak M, Balola A, Coutinho CP, Godinho CP, Hassan AA, et al. Adaptation and Survival of Burkholderia cepacia and B. contaminans During Long-Term Incubation in Saline Solutions Containing Benzalkonium Chloride. Front Bioeng Biotechnol. 2020 Jun 26;8.spa
dc.relation.referencesAhn Y, Lee UJ, Lee YJ, LiPuma JJ, Hussong D, Marasa B, et al. Oligotrophic Media Compared with a Tryptic Soy Agar or Broth for the Recovery of Burkholderia cepacia Complex from Different Storage Temperatures and Culture Conditions. J Microbiol Biotechnol. 2019;29(10)spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)spa
dc.subject.proposalBurkholderia cepaciaspa
dc.subject.proposalContaminaciónspa
dc.subject.proposalSistema de tratamiento de aguaspa
dc.subject.proposalIndustria Farmacéuticaspa
dc.subject.proposalProductos estérileseng
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dc.rights.coarhttp://purl.org/coar/access_right/c_14cbspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Derechos Reservados Universidad Colegio Mayor de Cundinamarca, 2022
Excepto si se señala otra cosa, la licencia del ítem se describe como Derechos Reservados Universidad Colegio Mayor de Cundinamarca, 2022